
PyCon 2013 - Introduction to
SQLAlchemy

Release 1

Michael Bayer

March 14, 2013



CONTENTS

1 Front Matter 2
1.1 Purpose of this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Web Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Mailing List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 IRC Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Presenters / Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Package Setup 4
2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Obtaining the Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Building the Documentation Handout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Installing the Slide Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Relational Database Review 7
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Relational Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Data Manipulation Language (DML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 ACID Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Glossary 22
4.1 Relational Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 SQLAlchemy Core / Object Relational Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Further Reading 43

Index 44

i



PyCon 2013 - Introduction to SQLAlchemy, Release 1

Contents:

CONTENTS 1



CHAPTER

ONE

FRONT MATTER

1.1 Purpose of this Document

Students attending the Introduction to SQLAlchemy tutorial should receive a copy of this document prior to attending
the class, and hopefully will be able to download the entire student handout package.

At the very least, students should read through the Relational Database Review section of this document, which
introduces/reviews basic relational database and transactional concepts; this section is essentially prerequisite material
to the tutorial itself. As many/most students will be familiar with a large portion of this material, making it available
ahead of time will hopefully allow those who are less familiar to catch up, while not spending too much time in the
class itself with what may be review material for many.

A second task that would be extremely helpful would be for students to install and test the slide runner environment
and application; the Package Setup section describes these steps in detail, and includes getting students familiar with
Python virtual environments if not already, getting the latest version of SQLAlchemy installed into the local (non-
system-wide) environment, and ensuring that the tutorial slides can be run successfully. In the actual class, we’ll spend
a lot of time stepping through these slides, and students can step through the same slides locally on their machines as
well as attempt other experiments and exercises within the environment.

Two other sections, Glossary and Further Reading, represent more detailed paths for learning. The glossary is broken
into two sections: Relational Terms and SQLAlchemy Core / Object Relational Terms. It’s a good idea for students
to run through the relational section here; the SQLAlchemy section on the other hand will be more useful after the
tutorial is complete, as a place to review some of the key concepts covered in the material.

1.2 Web Site

http://www.sqlalchemy.org/

1.3 Mailing List

Send an email to: sqlalchemy-subscribe@googlegroups.com

View archives or subscribe with a Google account at: http://groups.google.com/group/sqlalchemy

1.4 IRC Channel

#sqlalchemy on the Freenode network

2

http://www.sqlalchemy.org/
mailto:sqlalchemy-subscribe@googlegroups.com
http://groups.google.com/group/sqlalchemy


PyCon 2013 - Introduction to SQLAlchemy, Release 1

1.5 Presenters / Credits

Michael Bayer (http://techspot.zzzeek.org) is a NYC-based software contractor with a decade of experience dealing
with relational databases of all shapes and sizes. After writing many homegrown database abstraction layers in such
languages as C, Java and Perl, and finally after several years of practice working with a huge multi-server Oracle
system for Major League Baseball, he wrote SQLAlchemy as the ‘ultimate toolset’ for generating SQL and dealing
with databases overall. The goal is to contribute towards a world-class one-of-a-kind toolset for Python, helping to
make Python the universally popular programming platform it deserves to be.

Parts of this handout, as well as the core of the “Slide Presenter” tool, were written by Jason Kirtland
(http://discorporate.us/jek/) who has been a key contributor to the SQLAlchemy project for many years.

Big thanks to Ben Trofatter for help editing / proofreading this document.

1.5. Presenters / Credits 3

http://techspot.zzzeek.org
http://discorporate.us/jek/


CHAPTER

TWO

PACKAGE SETUP

2.1 Contents

This package contains:

• student handout built as a PDF file handout.pdf, as well as an HTML layout starting at
handout/index.html.

• Sphinx source files for the handout in handout/source. Those familiar with Sphinx can build the handout
document in other formats using the makefile handout/Makefile.

• Interactive Python “slide runner” application, which is essentially a customized REPL that can step through
segments of a Python script.

• Demonstration Python scripts which illustrate various features of SQLAlchemy; these scripts are formatted to
work best with the “slide runner” application, though can be run directly as well.

• Packages required to run the interactive slide runner and the example SQLAlchemy programs in sw/, including
SQLAlchemy itself.

2.2 Prerequisites

A minimum version of Python 2.6 is recommended; Python 2.7, 3.1, 3.2 or 3.3 are also fine.

For database access, the tutorials use the SQLite database by default, which is included as part of the Python standard
library.

If your Python was custom built and does not include SQLite, it can be added in by rebuilding with the SQLite libraries
available or by installing pysqlite.

To build the documentation, the Sphinx documentation system and its prerequistites must be installed.

To install the slide runner and dependencies, virtualenv is strongly recommended, available at
http://pypi.python.org/pypi/virtualenv. Students are encouraged to gain rudimental familiarity with virtualenv
prior to the class. By using virtualenv, there will be no dependency between the libraries used to run the local
applications here versus those libraries that may be installed with the system-wide Python. For example, if students
have old and broken versions of SQLAlchemy installed, they will be left untouched by this process, but will not
interfere with the usage of the local application, which will be using the latest and greatest.

4

http://sphinx-doc.org/
http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
http://sqlite.org/
http://sqlite.org/
http://sqlite.org/
http://sphinx-doc.org/
http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/virtualenv


PyCon 2013 - Introduction to SQLAlchemy, Release 1

2.3 Obtaining the Package

The most recent version of this package is available using git:

git clone https://bitbucket.org/zzzeek/pycon2013_student_package.git

While git is preferred so that the package can easily be updated, those who don’t have git installed can also download
the file directly as a .zip file via https://bitbucket.org/zzzeek/pycon2013_student_package/get/master.zip.

2.4 Building the Documentation Handout

The documentation can be built using standard Sphinx techniques.

To build HTML on Linux / OSX:

cd handout
make html

To build HTML on Windows:

cd handout
make html

The documentation can also be built as PDF or any other format supported by Sphinx. See the Sphinx documentation
at http://sphinx-doc.org/ for further usage and configuration information.

2.5 Installing the Slide Environment

The slide environment features a working SQLAlchemy environment as well as several tutorial-style Python scripts
which illustrate usage patterns. The slides are best run using a specialized “slide runner” application, which we will
be running as part of the class.

To make the installation as easy as possible, as well as to minimize the need for network access, source installation
packages for the non-standard prerequisite libraries are included here in the sw/ directory. However, the system is
best run using a Python virtualenv environment, so that system-wide installation is not required.

Steps to install:

1. Ensure that virtualenv is installed, preferably systemwide.

2. Create a local virtualenv:

$ virtualenv --no-site-packages .venv

This will create a directory .venv/bin which is where scripts are run. On Windows, the directory is called
.venv/Scripts.

3. Run the install.py script, which will install packages from the sw/ directory into the local virtualenv. On
Linux/OSX:

$ .venv/bin/python install.py

On Windows:

$ .venv\Scripts\python.exe install.py

4. A particular tutorial script can be run using the sliderepl program. On Linux OSX:

2.3. Obtaining the Package 5

https://bitbucket.org/zzzeek/pycon2013_student_package/get/master.zip
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/virtualenv


PyCon 2013 - Introduction to SQLAlchemy, Release 1

$ .venv/bin/sliderepl 01_engine_usage.py

On Windows:

$ .venv\Scripts\sliderepl.exe 01_engine_usage.py

2.5. Installing the Slide Environment 6



CHAPTER

THREE

RELATIONAL DATABASE REVIEW

3.1 Introduction

This document is a brief overview of key relational database concepts, including SQL basics as well as the basics
of transactions. SQLAlchemy is somewhat unique in that it doesn’t try to hide any of these concepts within regular
use, and the developer of a SQLAlchemy-enabled application will be dealing with concepts of SQL, transactions, and
Python expressions and object models, all at the same time. While this may sound daunting, it is in practice actually
a better way to work, instead of relying upon a tool to hide away the existence of the relational database. Best of all,
once the practice of integrating all three techniques is mastered, you’ll be able to call yourself an Alchemist :).

The Introduction to SQLAlchemy tutorial starts off with the assumption that the student is familiar with the concepts
outlined in this document - if they’re new to you, spending some time familiarizing will be time well spent, and if
they’re old hat, you’ll be in good shape to jump right into the SQLAlchemy tutorial.

Throughout this document, we’ll try to refer heavily to the Glossary, which tries to provide an overview and additional
links on just about every concept.

3.2 Overview

• Relational Databases, or RDBMS, are databases that draw upon the Relational Model, created by Edgar Codd.

• RDBMS organizes data into tables, rows, and columns, mimicking similar concepts in the relational model.

• The relational model encourages normalization, which is a system of minimizing repetition and dependency
between rows.

• RDBMSs use Structured Query Language to access and manipulate rows.

• RDBMSs provide guarantees for data using the ACID model.

3.3 Relational Schemas

The schema refers to a fixed structure configured within a database that defines how data will be represented. The
most fundamental unit of data within a schema is known as the table.

3.3.1 Table

The Table is the basic unit of storage in a relational database, representing a set of rows.

7



PyCon 2013 - Introduction to SQLAlchemy, Release 1

The table encompasses a series of columns, each of which describes a particular type of data unit within the table. The
data within the table is then organized into rows, each row containing a single value for each column represented in
the table.

3.3.2 DDL

At the SQL console, we create a new table as a permanent fixture within a database schema using the CREATE TABLE
statement. The CREATE TABLE statement is an example of Data Definition Language, or DDL, which is a subset of
SQL:

CREATE TABLE employee (
emp_name VARCHAR(30),
dep_id INTEGER

)

3.3.3 Primary Keys

A table can be created with constraints, which place rules on what specific data values can be present in the table. One
of the most common constraints is the primary key constraint, which enforces that every row of the table must have
a uniquely identifying value, consisting of one or more columns, where the values can additionally not be NULL. A
primary key that uses more than one column to produce a value is known as a composite primary key.

It is a best practice that all tables in a relational database contain a primary key. Two varieties of primary key are
surrogate primary key and natural primary key, where the former is specifically a “meaningless” value, and the latter is
“meaningful”. Which style to use is a hotly debated topic; the surrogate key is generally chosen for pragmatic reasons,
including memory and index performance as well as simplicity when dealing with updates, whereas the natural primary
key is often chosen for being more “correct” and closer to the relational ideal. We restate our employee table below
adding a surrogate integer primary key on a new column emp_id:

CREATE TABLE employee (
emp_id INTEGER,
emp_name VARCHAR(30),
dep_id INTEGER,
PRIMARY KEY (emp_id)

)

3.3. Relational Schemas 8



PyCon 2013 - Introduction to SQLAlchemy, Release 1

3.3.4 Foreign Keys

Once a table is defined as having a primary key constraint, another table can be constrained such that its rows may
refer to a row that is guaranteed to be present in this table. This is implemented by establishing a column or columns
in the “remote”, or child, table whose values must match a value of the primary key of the “local”, or parent, table.
Both sets of columns are then named as members of a foreign key constraint, which instructs the database to enforce
that values in these “remote” columns are guaranteed to be present in the “local” table’s set of primary key columns.
This constraint takes effect at every turn; when rows are inserted into the remote table, when rows are modified in the
remote table, as well as when an attempt is made to delete or update rows in the parent table, the database ensures that
any value subject to the foreign key constraint be present in the set of referenced columns, or the statement is rejected.

A foreign key constraint that refers fully to a composite primary key is predictably known as a composite foreign key.
It is also possible, in a composite scenario, for a foreign key constraint to only refer to a subset of the primary key
columns in the referenced table, but this is a highly unusual case.

Below, the figure illustrates a department table which is referred to by the employee table by relating the
employee.dep_id column to the department.dep_id column:

The above schema can be created using DDL as follows:

CREATE TABLE department (
dep_id INTEGER,
dep_name VARCHAR(30),
PRIMARY KEY (dep_id)

)

CREATE TABLE employee (
emp_id INTEGER,
emp_name VARCHAR(30),
dep_id INTEGER,
PRIMARY KEY (emp_id),
FOREIGN KEY (dep_id)
REFERENCES department(dep_id)

)

3.3.5 Normalization

The structure of a relational schema is based on a system known as relational algebra. The central philosophy that
drives the design of a relational schema is a process known as normalization, which like most fundamental computer
science concepts is an entire field of study onto itself. In practice however, normalization usually boils down to a few
simple practices that become second nature in not too much time.

The general idea of normalization is to eliminate the repetition of data, so that any one particular piece of information
is represented in exactly one place. By doing so, that piece of information becomes one of many atomic units by which
data can be searched and operated upon. For example, if hundreds of records all refer to a particular date record, we
can correlate all those records on this single date record strictly based on the association of those identities.

A typical example of denormalized data looks like:

3.3. Relational Schemas 9



PyCon 2013 - Introduction to SQLAlchemy, Release 1

Employee Language
------------------
name language department
------- -------- -------------
Dilbert C++ Systems
Dilbert Java Systems
Wally Python Engineering
Wendy Scala Engineering
Wendy Java Engineering

The table’s rows can be uniquely identified by the composite of the “name” and “language” columns, which therefore
make up the table’s candidate key. Normalization theory would claim the above table violates “second normal form”
because the “non prime” attribute “department” is logically dependent only on the “name” column, which is a subset
of the candidate key. (Note that the author is carefully parsing the Wikipedia page for normalization here in order to
state this correctly). A proper normalization would use two tables along the lines of the following:

Employee Department
-------------------
name department
-------- -----------
Dilbert Systems
Wally Engineering
Wendy Engineering

Employee Language
------------------
name language
-------- --------
Dilbert C++
Dilbert Java
Wally Python
Wendy Scala
Wendy Java

While the formal reasoning behind the above change may be difficult to parse, a visual inspection of the data re-
veals more obviously how the second form is an improvement; the original version repeats duplicate associations
between “name” and “department” many times according to how many distinct “language” values correspond to a
name; whereas the second version uses separate tables so that each “name/department” and “name/language” associ-
ation can be expressed independently.

The concept of data constraints, particularly the primary key constraint and the foreign key constraint, are designed to
work naturally with the concept of normalization. Constraints would be applied to the above schema by establishing
“Employee Department->name” as a primary key, establishing “Employee Language->name, language” as a com-
posite primary key, and then creating a foreign key such that “Employee Language->name” must refer to “Employee
Department->name”. When a schema resists being organized into simple primary and foreign key relationships, that’s
often a sign that it isn’t strongly normalized.

The Wikipedia page on normalization (http://en.wikipedia.org/wiki/Database_normalization) is a great place to learn
more.

3.4 Data Manipulation Language (DML)

Once we have a schema defined, data can be placed into the tables and also modified using another subset of SQL
called data manipulation language, or DML.

3.4. Data Manipulation Language (DML) 10

http://en.wikipedia.org/wiki/Database_normalization


PyCon 2013 - Introduction to SQLAlchemy, Release 1

3.4.1 Inserts

New rows are added to a table using the INSERT statement. The INSERT statement contains a VALUES clause which
refers to the actual values to be inserted into each row.

INSERT INTO employee (emp_id, emp_name, dep_id)
VALUES (1, ’dilbert’, 1);

INSERT INTO employee (emp_id, emp_name, dep_id)
VALUES (2, ’wally’, 1);

Auto Incrementing Integer Keys

Most modern databases feature a built-in system of generating incrementing integer values, which are in particu-
lar usually used for tables that have surrogate integer primary keys, such as our employee and department
tables. For example, when using SQLite, the above emp_id column will generate an integer value automati-
cally; when using MySQL, an integer primary key declared with AUTO INCREMENT will do so as well; and on
Postgresql, declaring a primary key with the datatype SERIAL will have the same end effect. When using these
so-called “auto incrementing” primary key generators, we omit the column from the INSERT statement:

INSERT INTO employee (emp_name, dep_id)
VALUES (’dilbert’, 1);

INSERT INTO employee (emp_name, dep_id)
VALUES (’wally’, 1);

Databases that feature primary key generation systems will also feature some means of acquiring the “generated”
integer identifier after the fact, using non-standard SQL extensions and/or functions. When using Postgresql, one
such way of reading these generated identifiers is to use RETURNING:

INSERT INTO employee (emp_name, dep_id)
VALUES (’dilbert’, 1) RETURNING emp_id;

emp_id
------
1

While every database features a different system of generating and retrieving these keys, we’ll generally refer to
the style above where the integer primary key can be omitted from an INSERT. When using SQLAlchemy, one
of the most fundamental features it provides is a consistent and transparent system of utilizing the wide variety
of key generation and retrieval schemes.

3.4.2 Updates

The UPDATE statement changes the contents of an existing row, using a WHERE clause to identify those rows which
are the target of the update, and a SET clause which identifies those columns which should be modified and to what
values:

UPDATE employee SET dep_id=7 WHERE emp_name=’dilbert’

When an UPDATE statement like the above one executes, it may match any number of rows, including none at all.
An UPDATE statement typically has a “row count” value associated with a particular execution, which indicates the
number of rows that matched the WHERE criteria, and therefore represents the number of rows that were subject to
the SET clause.

3.4. Data Manipulation Language (DML) 11



PyCon 2013 - Introduction to SQLAlchemy, Release 1

3.4.3 Deletes

The DELETE statement removes rows. Like the UPDATE statement, it also uses a WHERE clause to identify those rows
which should be deleted:

DELETE FROM employee WHERE dep_id=1

Above, all employee records within department id 1 will be deleted.

3.5 Queries

The key feature of SQL is its ability to issue queries. The SELECT statement is the primary language construct
providing this feature, and is where we spend most of our time when using relational databases, allowing us to query
for rows in tables.

An illustration of a SELECT statement is in the figure below. Like the UPDATE and DELETE statements, it also
features a WHERE clause which is the primary means of specifying which rows should be selected.

An example of a SELECT that chooses the rows where dep_id is equal to the value 12:

SELECT emp_id, emp_name FROM employee WHERE dep_id=12

The key elements of the above SELECT statement are:

1. The FROM clause determines the table or tables from which we are to select rows.

2. The WHERE clause illustrates a criterion which we use to filter those rows retrieved from the tables in the FROM
clause

3. The columns clause is the list of expressions following the SELECT keyword and preceding the FROM keyword,
and indicates those values which we’d like to display given each row that we’ve selected.

3.5. Queries 12



PyCon 2013 - Introduction to SQLAlchemy, Release 1

With the above rules, our statement might return to us a series of rows that look like this, if the emp_name column
values wally, dilbert, and wendy were all those linked to dep_id=12:

emp_id emp_name
-------+------------

1 | wally
2 | dilbert
5 | wendy

3.5.1 Ordering

The ORDER BY clause may be applied to a SELECT statement to determine the order in which rows are returned.
Ordering is applied to the SELECT after the WHERE clause. Below, we illustrate our statement loading employee
records ordered by name:

SELECT emp_id, emp_name FROM employee WHERE dep_id=12 ORDER BY emp_name

Our result set then comes back like this:

emp_id emp_name
-------+------------

2 | dilbert
1 | wally
5 | wendy

3.5.2 Joins

A SELECT statement can use a join to produce rows from two tables at once, usually joining along foreign key
references. The JOIN keyword is used in between two table names inside the FROM clause of a SELECT statement.
The JOIN also usually includes an ON clause, which specifies criteria by which the rows from both tables are correlated
to each other.

The figure below illustrates the behavior of a join, by indicating in the central blue box those rows which are composites
of rows from both “table_1” and “table_2” and which satisfy the ON clause:

3.5. Queries 13



PyCon 2013 - Introduction to SQLAlchemy, Release 1

It’s no accident that the blue box looks a lot like a table. Even though above, only “table_1” and “table_2” represent
fixed tables, the JOIN creates for us what is essentially a derived table, a list of rows that we could use in subsequent
expressions.

Using our department / employee example, to select employees along with their department name looks like:

SELECT e.emp_id, e.emp_name, d.dep_name
FROM employee AS e
JOIN department AS d
ON e.dep_id=d.dep_id

WHERE d.dep_name = ’Software Artistry’

The result set from the above might look like:

emp_id emp_name dep_name
-------+------------+--------------------

2 | dilbert | Software Artistry
1 | wally | Software Artistry
5 | wendy | Software Artistry

3.5.3 Left Outer Join

A variant of the join is the left outer join. This structure allows rows to be returned from the table on the “left” side
which don’t have any corresponding rows on the “right” side. For instance, if we wanted to select departments and
their employees, but we also wanted to see the names of departments that had no employees, we might use a LEFT
OUTER JOIN:

SELECT d.dep_name, e.emp_name
FROM department AS d
LEFT OUTER JOIN employee AS e
ON d.dep_id=e.dep_id

3.5. Queries 14



PyCon 2013 - Introduction to SQLAlchemy, Release 1

Supposing our company had three departments, where the “Sales” department was currently without any employees,
we might see a result like this:

dep_name emp_name
--------------------+------------
Management | dogbert
Management | boss
Software Artistry | dilbert
Software Artistry | wally
Software Artistry | wendy
Sales | <NULL>

There is also a “right outer join”, which is the same as left outer join except you get all rows on the right side. However,
the “right outer join” is not commonly used, as the “left outer join” is widely accepted as proper convention, and is
arguably less confusing than a right outer join (in any case, right outer joins confuse the author!).

3.5.4 Aggregates

An aggregate is a function that produces a single value, given many values as input. A commonly used aggregate
function is the count() function which, given a series of rows as input, returns the count of those rows as an integral
value. The count() function accepts as an argument any SQL expression, which we often pass as the wildcard string
* that essentially means “all columns” - unlike most aggregate functions, count() doesn’t evaluate the meaning its
argument, it only counts how many times it is called:

SELECT count(*) FROM employee

?count?
-------

18

Another aggregate expression might return to us the average number of employees within departments. To accomplish
this, we also make use of the GROUP BY clause, described below, as well as a subquery:

SELECT avg(emp_count) FROM
(SELECT count(*) AS emp_count
FROM employee GROUP BY dep_id) AS emp_counts

?avg?
-----

2

Note the above query only takes into account non-empty departments. To include empty departments would require a
more complex sub-query that takes into account rows from department as well.

3.5.5 Grouping

The GROUP BY keyword is applied to a SELECT statement, breaking up the rows it selects into smaller sets based
on some criteria. GROUP BY is commonly used in conjunction with aggregates, as it can apply individual subsets of
rows to the aggregate function, yielding an aggregated return value for each group. The figure below illustrates the
rows from a table being broken into three sub-groups, based on the expression “a”, and then the SUM() aggregate
function applied to the value of “b” for each group:

3.5. Queries 15



PyCon 2013 - Introduction to SQLAlchemy, Release 1

An example of an aggregation / GROUP BY combination that gives us the count of employees per department id:

SELECT count(*) FROM employee GROUP BY dep_id

The above statement might give us output such as:

?count? | dep_id
---------+----------

2 | 1
10 | 2
6 | 3
9 | 4

3.5.6 Having

After we’ve grouped things with GROUP BY and gotten aggregated values by applying aggregate functions, we can
be filter those results using the HAVING keyword. We can take the above result set and return only those rows where
more than seven employees are present:

SELECT count(*) as emp_count FROM employee GROUP BY dep_id HAVING emp_count > 7

The result would be:

emp_count | dep_id
-----------+----------

3.5. Queries 16



PyCon 2013 - Introduction to SQLAlchemy, Release 1

10 | 2
9 | 4

3.5.7 SELECT Process Summary

It’s very helpful (at least the author thinks so) to keep straight exactly how SELECT goes about its work when given a
combination of aggregation and clauses (such as WHERE, ORDER BY, GROUP BY, HAVING).

Given a series of rows:

emp_id emp_name dep_id
-------+------------+----------

1 | wally | 1
2 | dilbert | 1
3 | jack | 2
4 | ed | 3
5 | wendy | 1
6 | dogbert | 4
7 | boss | 3

We’ll analyze what a SELECT statement like the following does in a logical sense:

SELECT count(emp_id) as emp_count, dep_id
FROM employee
WHERE dep_id=1 OR dep_id=3 OR dep_id=4
GROUP BY dep_id
HAVING emp_count > 1
ORDER BY emp_count, dep_id

1. the FROM clause is operated upon first. The table or tables which the statement is to retrieve rows from are
resolved; in this case, we start with the set of all rows contained in the employee table:

... FROM employee ...

emp_id emp_name dep_id
-------+------------+----------

1 | wally | 1
2 | dilbert | 1
3 | jack | 2
4 | ed | 3
5 | wendy | 1
6 | dogbert | 4
7 | boss | 3

2. For the set of all rows in the employee table, each row is tested against the criteria specified in the WHERE
clause. Only those rows which evaluate to “true” based on this expression are returned. We now have a subset
of rows retrieved from the employee table:

... WHERE dep_id=1 OR dep_id=3 OR dep_id=4 ...

emp_id emp_name dep_id
-------+------------+----------
1 | wally | 1
2 | dilbert | 1
4 | ed | 3
5 | wendy | 1
6 | dogbert | 4
7 | boss | 3

3.5. Queries 17



PyCon 2013 - Introduction to SQLAlchemy, Release 1

3. With the target set of rows assembled, GROUP BY then organizes the rows into groups based on the criterion
given. The “intermediary” results of this grouping will be passed on to the next step behind the scenes. Were
we able to look into the pipeline, we’d see something like this:

... GROUP BY dep_id ...

"group" emp_id emp_name dep_id
----------+---------+------------+---------
dep_id=1 | 1 | wally | 1

| 2 | dilbert | 1
| 5 | wendy | 1

----------+---------+------------+---------
dep_id=3 | 4 | ed | 3

| 7 | boss | 3
----------+---------+------------+---------
dep_id=4 | 6 | dogbert | 4

4. Aggregate functions are now applied to each group. We’ve passed emp_id to the count() function, which
means for group “1” it will receive the values “1”, “2”, and “5”, for group “3” it will receive the values “4” and
“7”, for group “4” it receives the value “6”. count() doesn’t actually care what the values are, and we could
as easily have passed in *, which means “all columns”. However, most aggregate functions do care what the
values are, including functions like max(), avg() min() etc., so it’s usually a good habit to be aware of the
column expression here. Below, we observe that the “emp_id” and “emp_name” columns go away, as we’ve
aggregated on the count:

... count(emp_id) AS emp_count ...

emp_count dep_id
------------+-----------

3 | 1
------------+-----------

2 | 3
------------+-----------

1 | 4

5. Almost through all of our keywords, HAVING takes effect once we have the aggregations, and acts like a WHERE
clause for aggregate values. In our statement, it filters out groups that have one or fewer members:

... HAVING emp_count > 1 ...

emp_count dep_id
------------+-----------

3 | 1
------------+-----------

2 | 3

6. Finally, ORDER BY is applied. It’s important to remember in SQL that relational algebra is a language of sets,
which are inherently un-ordered. In the typical case, all of the work of selecting, aggregating, and filtering our
data are done before any ordering is applied, and only right before the final results are returned to us are they
ordered:

... ORDER BY emp_count, dep_id

emp_count dep_id
------------+-----------

2 | 3

3.5. Queries 18



PyCon 2013 - Introduction to SQLAlchemy, Release 1

------------+-----------
3 | 1

3.6 ACID Model

The flip side to the relational model employed by relational databases is the so called transactional model most of
them provide. The acronym ACID refers to the principal properties of relational database transactions (as well as
transactions for any kind of hypothetical database).

3.6.1 Atomicity

Atomicity allows multiple statements to proceed within a particular demarcation known as a transaction, which has
a single point of completion known as a commit. A transaction is committed once all the operations within it have
completed successfully. If any of the operations fail, the transaction can instead be reverted using a rollback, which
reverses all the steps that have proceeded within the transaction, leaving the state of the database unchanged relative
to before the transaction began. Atomicity refers to the fact that all of these steps proceed or fail as a single unit; it’s
not possible for some of the steps to succeed without all of them succeeding.

3.6.2 Consistency

Consistency encompasses the ability of the database to ensure that it always remains in a valid state after a transaction
completes successfully. Key elements used to provide consistency are constraints, cascades, and triggers.

Data constraints, the most common system used to define consistency, establish rules that are checked against changes
in data as those changes are invoked against the database. Typical constraints include:

• NOT NULL constraint - value in a column may never be NULL or non-present.

• primary key constraint - each row must contain a single- or multi-column value that is unique across all other
rows in the table, and is the single value that logically identifies the information stored in that row.

• foreign key constraint - a particular column or columns must contain a value that exists elsewhere in a different
row, usually of a different table. The foreign key constraint is the building block by which the rows of many flat
tables can be composed together to form more intricate geometries.

• unique constraint - similar to the primary key constraint, the unique constraint identifies any arbitrary column or
set of columns that also must be unique throughout the whole table, without themselves comprising the primary
key.

• check constraint - any arbitrary expression can be applied to a row, which will result in that row being rejected
if the expression does not evaluate to “true”.

Constraints are a sometimes misunderstood concept that when properly used can give a developer a strong “peace of
mind”, knowing that even in the face of errors, mistakes, or omissions within applications that communicate with the
database, the database itself will remain in a consistent state, rather than running the risk of accumulating ongoing
data errors that are only detected much later when it’s too late. This “peace of mind” allows us to write and test
our applications more quickly and boldly than we would be able to otherwise; more quickly because the relational
database already does lots of the integrity checking we’d otherwise have to write by hand, and more boldly because
there is much less chance that code errors can result in corruption of data as if we hadn’t used constraints.

3.6. ACID Model 19



PyCon 2013 - Introduction to SQLAlchemy, Release 1

3.6.3 Isolation

Isolation is a complex subject which in a general sense refers to the interactivity between concurrent transactions, that
is, more than one transaction occuring at the same time. It is focused on the degree to which the work being performed
by a particular transaction may be viewed by other transactions going on at the same time. The isolation of concurrent
transactions is an important area of consideration when constructing an application, as in many cases the decisions that
are made within the scope of a transaction may be affected by this cross-transaction visibility; the isolation behavior
can also have a significant impact on database performance. While there are techniques by which one doesn’t have
to worry too often about isolation, in many cases dealing with the specifics of isolation is unavoidable, and no one
isolation behavior is appropriate in all cases.

In practice, the level of isolation between transactions is usually placed into four general categories (there are actually
a lot more categories for people who are really into this stuff):

• Read uncommitted - This is the lowest level of isolation. In this mode, transactions are subject to so-called dirty
reads, whereby the work that proceeds within a transaction is plainly visible to other transactions as it proceeds.
With dirty reads, a transaction might UPDATE a row with updated data, and this updated row is now globally
visible by other transactions. If the transaction is rolled back, all the other transactions will be exposed to this
rollback as well.

• Read committed - In read committed, we’re no longer subject to dirty reads, and any data that we read from
concurrent transactions is guaranteed to have been committed. However, as we proceed within our own transac-
tion, we can still see the values of rows and SELECT statements change, as concurrent transactions continue to
commit modifications to rows that we’re also looking at.

• Repeatable Read - The next level operates at the row level, and adds the behavior such that any individual row
that we read using a SELECT statement will remain consistent from that point on, relative to our transaction.
That is, if we read the row with primary key “5” from the employee table, and in the course of our work a
concurrent transaction updates the emp_name column from “Ed” to “Edward”, when we re-SELECT this row,
we will still see the value “Ed” - that is, the value of this row remains consistent from the first time we read it
forward. If we ourselves attempt to update the row again, we may be subject to a conflict when we attempt to
commit the transaction.

Within repeatable read, we are still subject to the concept of a so-called phantom read - this refers to a row
that we see in one SELECT statement that we later (or previously) do not see in a different SELECT statement,
because a concurrent transaction has deleted or inserted that row since we last selected with a given set of
criteria.

• Serializable - Generally considered to be the highest level of isolation, the rough idea of serializable isolation
is that we no longer have phantom reads - if we select a series of N rows using a SELECT statement, we can
be guaranteed that we will always get those same N rows when emitting a subsequent SELECT of the same
criteria, even if concurrent transactions have INSERTed or DELETed rows from that table.

The impact of using a higher level of isolation depends much on the specifics of the database in use. Generally, lower
levels of isolation are associated with higher performance and a reduced chance of deadlocks. Historically, this is due
to the fact that a lower level of isolation has less of a need to synchronize concurrent operations using locks. However,
most modern relational databases employ a concept known as multi version concurrency control in order to reduce
or eliminate the need for locking, by assigning to each transaction a unique identifier that is then applied to copies
of rows created locally to each transaction. As a transaction commits its data, its private copies of rows become the
official “rows of record” for the database as a whole. An MVCC scheme may still introduce performance overhead
with higher isolation levels, as such systems must monitor and report so-called serialization failures, which are the
rejection of transactions that conflict with another one executing concurrently.

3.6.4 Durability

Durability basically means that relational databases provide a guarantee that once a transaction COMMIT has suc-
ceeded, the data is safely written to disk, and the chance of that data being lost due to a system failure is low to nil.

3.6. ACID Model 20



PyCon 2013 - Introduction to SQLAlchemy, Release 1

Durability tends to be something most developers take for granted when working with relational databases; however,
in recent years it’s been discussed a lot more with the rise of so-called NoSQL databases, which in some cases attempt
to scale back the promise of durability in exchange for faster transaction throughput.

3.6. ACID Model 21



CHAPTER

FOUR

GLOSSARY

The glossary is broken into two distinct areas of terminology, for those who want to read the whole thing.

Relational Terms

SQLAlchemy Core / Object Relational Terms

4.1 Relational Terms

ACID, ACID model An acronym for “Atomicity, Consistency, Isolation, Durability”; a set of properties that guaran-
tee that database transactions are processed reliably. (via Wikipedia)

See Also:

ACID Model

http://en.wikipedia.org/wiki/ACID_Model

atomicity Atomicity is one of the components of the ACID model, and requires that each transaction is “all or
nothing”: if one part of the transaction fails, the entire transaction fails, and the database state is left unchanged.
An atomic system must guarantee atomicity in each and every situation, including power failures, errors, and
crashes. (via Wikipedia)

See Also:

Atomicity

http://en.wikipedia.org/wiki/Atomicity_(database_systems)

candidate key A relational algebra term referring to an attribute or set of attributes that form a uniquely identifying
key for a row. A row may have more than one candidate key, each of which is suitable for use as the primary
key of that row. The primary key of a table is always a candidate key.

See Also:

Primary Keys

http://en.wikipedia.org/wiki/Candidate_key

cartesian product A mathematical operation which returns a set (or product set) from multiple sets. The Cartesian
product is the result of crossing members of each set with one another. (via Wikipedia)

See Also:

http://en.wikipedia.org/wiki/Cartesian_product

22

http://en.wikipedia.org/wiki/ACID_Model
http://en.wikipedia.org/wiki/Atomicity_(database_systems
http://en.wikipedia.org/wiki/Candidate_key
http://en.wikipedia.org/wiki/Cartesian_product


PyCon 2013 - Introduction to SQLAlchemy, Release 1

check constraint A check constraint is a condition that defines valid data when adding or updating an entry in a table
of a relational database. A check constraint is applied to each row in the table.

(via Wikipedia)

A check constraint can be added to a table in standard SQL using DDL like the following:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);

See Also:

http://en.wikipedia.org/wiki/Check_constraint

column, columns A vertical unit of storage in a table. The table defines one or more columns as fixed types of data
to be stored within rows.

columns clause The portion of a SELECT statement that enumerates a series of SQL expressions to be evaulated as
the returned result set. Typically, these expressions refer directly to table columns. The columns clause follows
the SELECT keyword and precedes the FROM keyword.

In the following SELECT statement, the “id” and “name” columns will be returned for each row, and this
enumeration of columns forms the “columns clause”:

SELECT id, name FROM user_account

commit Denotes the successful completion of a transaction. In SQL, we normally denote the commit using the
COMMIT statement:

BEGIN TRANSACTION

INSERT INTO employee (emp_id, emp_name, dep_id)
VALUES (1, ’dilbert’, 1);

INSERT INTO employee (emp_id, emp_name, dep_id)
VALUES (2, ’wally’, 1);

COMMIT

Above, the employee rows for dilbert and wally will be permanently available following the COMMIT
statement.

consistency Consistency is one of the compoments of the ACID model, and ensures that any transaction will bring
the database from one valid state to another. Any data written to the database must be valid according to all
defined rules, including but not limited to constraints, cascades, triggers, and any combination thereof. (via
Wikipedia)

See Also:

Consistency

http://en.wikipedia.org/wiki/Consistency_(database_systems)

constraint, constraints Rules established within a relational database that ensure the validity and consistency of
data. Common forms of constraint include primary key constraint, foreign key constraint, and check constraint.

See Also:

Consistency

correlated subquery, correlated subqueries A subquery is correlated if it depends on data in the enclosing
SELECT.

4.1. Relational Terms 23

http://en.wikipedia.org/wiki/Check_constraint
http://en.wikipedia.org/wiki/Consistency_(database_systems


PyCon 2013 - Introduction to SQLAlchemy, Release 1

Below, a subquery selects the aggregate value MIN(a.id) from the email_address table, such that it
will be invoked for each value of user_account.id, correlating the value of this column against the
email_address.user_account_id column:

SELECT user_account.name, email_address.email
FROM user_account
JOIN email_address ON user_account.id=email_address.user_account_id
WHERE email_address.id = (

SELECT MIN(a.id) FROM email_address AS a
WHERE a.user_account_id=user_account.id

)

The above subquery refers to the user_account table, which is not itself in the FROM clause of this nested
query. Instead, the user_account table is recieved from the enclosing query, where each row selected from
user_account results in a distinct execution of the subquery.

A correlated subquery is nearly always present in the WHERE clause or columns clause of the enclosing
SELECT statement, and never in the FROM clause; this is because the correlation can only proceed once the
original source rows from the enclosing statement’s FROM clause are available.

data definition language, DDL The SQL commands that define a schema. For example, CREATE TABLE, DROP
TABLE, ALTER TABLE.

See Also:

Relational Schemas

http://en.wikipedia.org/wiki/Data_Definition_Language

data manipulation language, DML The SQL commands that manipulate data. For example, SELECT, INSERT,
UPDATE and DELETE.

See Also:

Data Manipulation Language (DML)

http://en.wikipedia.org/wiki/Data_Manipulation_Language

durability Durability is a property of the ACID model which means that once a transaction has been committed, it
will remain so, even in the event of power loss, crashes, or errors. In a relational database, for instance, once
a group of SQL statements execute, the results need to be stored permanently (even if the database crashes
immediately thereafter). (via Wikipedia)

See Also:

Durability

http://en.wikipedia.org/wiki/Durability_(database_systems)

Edgar Codd, Edgar F. Codd Creator of the relational model.

See Also:

http://en.wikipedia.org/wiki/Edgar_F._Codd

EXISTS, EXISTS operator The EXISTS operator tests a subquery and returns true if the subquery returns any rows:

SELECT name FROM user_account
WHERE EXISTS
(SELECT * FROM email_address

WHERE email_address.user_account_id=user_account.id)

name
-------

4.1. Relational Terms 24

http://en.wikipedia.org/wiki/Data_Definition_Language
http://en.wikipedia.org/wiki/Data_Manipulation_Language
http://en.wikipedia.org/wiki/Durability_(database_systems
http://en.wikipedia.org/wiki/Edgar_F._Codd


PyCon 2013 - Introduction to SQLAlchemy, Release 1

jack
ed
wendy

The columns selected by the subquery are ignored. Only the number of rows are considered: no rows or at least
one. EXISTS <subquery> is a scalar, boolean expresion and can be used like any other boolean value in a
WHERE clause:

SELECT name FROM user_account
WHERE EXISTS (SELECT * FROM email_address WHERE email_address.user_account_id=user_account.id)
AND name=’ed’

name
------
ed

The subquery used within an EXISTS expression is nearly always a correlated subquery.

foreign key constraint A referential constraint between two tables. A foreign key is a field or set of fields in a
relational table that matches a candidate key of another table. The foreign key can be used to cross-reference
tables. (via Wikipedia)

A foreign key constraint can be added to a table in standard SQL using DDL like the following:

ALTER TABLE employee ADD CONSTRAINT dep_id_fk
FOREIGN KEY (employee) REFERENCES department (dep_id)

See Also:

Foreign Keys

http://en.wikipedia.org/wiki/Foreign_key_constraint

FROM clause A component of the SELECT statement which specifies the source tables or subqueries from which
rows are to be selected. The FROM clause follows the columns clause and may contain a comma-separated list
of tables and subqueries, as well as join expressions:

-- FROM clause illustrating an explicit join

SELECT id, name, email_address
FROM user_account
JOIN email_address ON user_account.id=email_address.user_account_id

-- FROM clause illustrating an implicit join

SELECT id, name, email_address
FROM user_account, email_address
WHERE user_account.id=email_address.user_account_id

IN, IN operator A comparison operator. Compares an expression against a list of values, and is true if it matches at
least one of them.

SELECT email FROM email_address
WHERE user_account_id IN (1, 2)

A subquery can be used in place of a literal list of values:

SELECT email FROM email_address
WHERE user_account_id IN
(SELECT id FROM user_account WHERE name=’jack’ OR name=’ed’)

4.1. Relational Terms 25

http://en.wikipedia.org/wiki/Foreign_key_constraint


PyCon 2013 - Introduction to SQLAlchemy, Release 1

isolation, isolated The isolation property of the ACID model ensures that the concurrent execution of transactions
results in a system state that would be obtained if transactions were executed serially, i.e. one after the other.
Each transaction must execute in total isolation i.e. if T1 and T2 execute concurrently then each should remain
independent of the other.[citation needed] (via Wikipedia)

See Also:

Isolation

http://en.wikipedia.org/wiki/Isolation_(database_systems)

join, inner join Combines the rows of two tables. Considers each pair of rows in turn, and returns one combined row
for each pair that matches an ON criteria.

SELECT ua.id, ua.name, ea.email, ea.user_account_id
FROM user_account AS ua
JOIN email_address AS ea
ON ua.id = ea.user_account_id

id | name | email | user_account_id
----+-------+----------------+----------------
1 | jack | jack@jack.com | 1
2 | ed | ed@yahoo.com | 2
2 | ed | ed@msn.com | 2
3 | wendy | wendy@nyt.com | 3

The result of the join can be defined in a logical sense by first determining the cartesian product of the left
and right side tables; then, for each row within this product, evaluating ON clause for each row, selecting only
those rows for which the clause evaluates to “true”. In practice, relational database systems use more efficient
approaches internally in order to evaluate the result of a join.

Usage of the JOIN or INNER JOIN keyword is logically equivalent to a so-called implicit join, where the
JOIN keyword is not present, and instead the left and right side expressions are delivered to the FROM clause
as a comma separated list, with the ON criteria stated instead in the WHERE clause:

SELECT ua.id, ua.name, ea.email, ea.user_account_id
FROM user_account AS ua, email_address.ea
WHERE ua.id = ea.user_account_id

See Also:

left outer join

http://en.wikipedia.org/wiki/Sql_join

left outer join A variant of the join whereby the criteria for including rows from the “left” side is relaxed, such that
not only left-side rows which correspond to the right side are returned, but also left-side rows for which no
right side row corresponds. In the case where no right side row corresponds, all columns from the right side are
returned as NULL.

Below, we illustrate selecting all user names from the user_account table, in addition to all the
email_address rows for each user_account row, but also including rows from user_account for
which no row in email_address is present:

SELECT ua.id, ua.name, ea.email, ea.user_account_id
FROM user_account AS ua
JOIN email_address AS ea
ON ua.id = ea.user_account_id

id | name | email | user_account_id
----+-------+----------------+----------------

4.1. Relational Terms 26

http://en.wikipedia.org/wiki/Isolation_(database_systems
http://en.wikipedia.org/wiki/Sql_join


PyCon 2013 - Introduction to SQLAlchemy, Release 1

1 | jack | jack@jack.com | 1
2 | ed | ed@yahoo.com | 2
2 | ed | ed@msn.com | 2
3 | wendy | wendy@nyt.com | 3
4 | mary | (null) | (null)

The left outer join is a key technique used in object relational systems in order to resolve a one to many collection,
that is a series of objects that contain zero or more related objects.

See Also:

join

multi version concurrency control, MVCC A system by which modern databases provide concurrent access to
database data. By assigning versions to snapshots of data in time, multiple transactions may simultaneously
view different versions of the data, relative to the time that they were begun.

See Also:

Isolation

http://en.wikipedia.org/wiki/Multiversion_concurrency_control

natural primary key A primary key that is formed of attributes that already exist in the real world. For example, a
USA citizen’s social security number could be used as a natural key. In other words, a natural key is a candidate
key that has a logical relationship to the attributes within that row.

(via Wikipedia)

See Also:

surrogate primary key

http://en.wikipedia.org/wiki/Natural_key

normalization Database normalization is the process of organizing the fields and tables of a relational database to
minimize redundancy and dependency. Normalization usually involves dividing large tables into smaller (and
less redundant) tables and defining relationships between them. The objective is to isolate data so that additions,
deletions, and modifications of a field can be made in just one table and then propagated through the rest of the
database via the defined relationships. (via Wikipedia)

See Also:

Normalization

http://en.wikipedia.org/wiki/Database_normalization

primary key, primary key constraint A constraint that uniquely defines the characteristics of each row. The pri-
mary key has to consist of characteristics that cannot be duplicated by any other row. The primary key may
consist of a single attribute or multiple attributes in combination. (via Wikipedia)

The primary key of a table is typically, though not always, defined within the CREATE TABLE DDL:

CREATE TABLE employee (
emp_id INTEGER,
emp_name VARCHAR(30),
dep_id INTEGER,
PRIMARY KEY (emp_id)

)

See Also:

Primary Keys

http://en.wikipedia.org/wiki/Primary_Key

4.1. Relational Terms 27

http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Natural_key
http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/Primary_Key


PyCon 2013 - Introduction to SQLAlchemy, Release 1

query, queries The means of interrogating a relational database for data. The primary feature in SQL used for
querying is the SELECT statement.

See Also:

Queries

http://en.wikipedia.org/wiki/Sql#Queries

relation, relations In relational algebra, a single grid of data represented by zero or more tuples. In a SQL database,
the most common relation is the table, which defines one or more columns of zero or more rows. The output of
a SELECT statement is also a relation.

relational model, relational algebra The relational model for database management is a database model based on
first-order predicate logic, first formulated and proposed in 1969 by Edgar F. Codd. In the relational model of a
database, all data is represented in terms of tuples, grouped into relations. A database organized in terms of the
relational model is a relational database. (via Wikipedia)

See Also:

http://en.wikipedia.org/wiki/Relational_model

right outer join Like a left outer join, except the left and right side are swapped. At least one row will be returned
for every row in the right table, and columns from the left row will be filled with NULL if the ON criteria does
not match. Right outer joins are not frequently used.

rollback Denotes the end to a transaction which reverses all the effects of the transaction that have proceeded thus far;
the state established within the transaction is discarded. In SQL, this is normally denoted using the ROLLBACK
statement:

BEGIN TRANSACTION

INSERT INTO employee (emp_id, emp_name, dep_id)
VALUES (1, ’dilbert’, 1);

INSERT INTO employee (emp_id, emp_name, dep_id)
VALUES (2, ’wally’, 1);

ROLLBACK

Above, no new rows will be present in the database following the ROLLBACK statement; both rows inserted for
dilbert and wally will be discarded.

row, rows A horizontal unit of storage in a table. Each new data record inserted into a table comprises a row; the
row in turn is broken into individual column values.

scalar, scalar value A single value, such as ’a’, 123 or ’2008-02-01’.

scalar subquery, scalar subqueries A scalar subquery is a subquery that returns a single column from a single row.
Scalar subqueries can be used like columns or anywhere an expression is required, which typically includes the
columns clause or WHERE clause of a SELECT statement.

Below, a scalar subquery is used in the columns clause to select the name column from the user_account
table for each row selected from the email_address table:

SELECT
email_address.email,
(SELECT user_account.name FROM user_account WHERE id=1) AS name

FROM email_address WHERE email_address.user_account_id=1

email | name
---------------+----------
jack@jack.com | jack

4.1. Relational Terms 28

http://en.wikipedia.org/wiki/Sql#Queries
http://en.wikipedia.org/wiki/Relational_model


PyCon 2013 - Introduction to SQLAlchemy, Release 1

Selecting an email address by user name, using a scalar subquery in the WHERE clause:

SELECT email_address.email FROM email_address
WHERE email_address.user_account_id=

(SELECT id FROM user_account WHERE name=’jack’)

email
---------------
jack@jack.com

Structured Query Language, SQL A special-purpose programming language designed for managing data in rela-
tional database management systems (RDBMS).

Originally based upon relational algebra and tuple relational calculus, its scope includes data insert, query,
update and delete, schema creation and modification, and data access control.

(via Wikipedia)

See Also:

http://en.wikipedia.org/wiki/Sql

subquery A SELECT statement embedded in another SELECT statement. Data returned from the inner SELECT is
available for use by the outer.

The subquery is a fundamental capability in SQL that allows so-called derived tables to be created; meaning,
the rows from a particular SELECT statement can be named as a unit of rows within an enclosing SELECT that
causes it to behave more or less like a plain table.

Example:

SELECT user_account.name, subq.ad_count FROM
user_account JOIN
(SELECT user_account_id, count(id) AS ad_count
FROM email_address GROUP BY user_account_id) AS subq
ON user_account.id=subq.user_account_id

Subqueries can be placed in a variety of ways inside of an enclosing SELECT statement. Three common
locations include the columns clause, the WHERE clause, and the FROM clause. The placement of the subquery
has an impact on the kind of data the query must return. In standard SQL, subqueries placed within the columns
or WHERE clause must be scalar subqueries, i.e. queries that return a single value, unless they are evaluated
by a boolean aggregation operator such as IN, EXISTS, ANY or ALL. A subquery used in the FROM clause, on
the other hand, can return any number of rows and columns.

Subqueries within the WHERE clause or columns clause are often correlated subqueries as well, as they are
invoked for each row received in the enclosing query. For a FROM clause subquery, correlation is not an option
as the FROM clause is evaluated before the correlatable rows are chosen.

surrogate primary key A primary key that is not derived from application data.

(via Wikipedia)

Surrogate primary keys in practice are often integer values generated by database sequences or other increment-
ing counters, or less commonly global unique identifiers (GUIDs).

See Also:

natural primary key

http://en.wikipedia.org/wiki/Surrogate_key

table A fundamental storage component used by relational databases. The table corresponds to what’s known as a
relation in relational algebra, and defines a series of columns, each of which represents a particular type of data

4.1. Relational Terms 29

http://en.wikipedia.org/wiki/Sql
http://en.wikipedia.org/wiki/Surrogate_key


PyCon 2013 - Introduction to SQLAlchemy, Release 1

value to be stored in the table. The columns are then organized at the data storage level into a collection of rows,
each of which corresponds to a unit of data.

table value, rowset An ordered collection of row values, each of the same length and types.

transaction, transactional A transaction comprises a unit of work (not to be confused with SQLAlchemy’s unit of
work pattern, which is similar) performed within a database management system against a database, and treated
in a coherent and reliable way independent of other transactions. Transactions in a database environment have
two main purposes:

• To provide reliable units of work that allow correct recovery from failures and keep a database consistent
even in cases of system failure, when execution stops (completely or partially) and many operations upon
a database remain uncompleted, with unclear status.

• To provide isolation between programs accessing a database concurrently. If this isolation is not provided,
the programs’ outcomes are possibly erroneous.

(via Wikipedia)

See Also:

http://en.wikipedia.org/wiki/Database_transaction

ACID Model

commit

rollback

tuple, tuples, row value An ordered collection of typed values, such as (1, ’ed’, ’ed@msn.com’).

uncorrelated subquery A subquery is uncorrelated if the database can execute it in isolation, without referring to
the enclosing SELECT statement.

SELECT user_account.name FROM user_account
WHERE user_account.id IN (SELECT user_account_id FROM email_address)

name
-------
jack
ed
wendy

unique constraint, unique key index A unique key index can uniquely identify each row of data values in a database
table. A unique key index comprises a single column or a set of columns in a single database table. No two
distinct rows or data records in a database table can have the same data value (or combination of data values) in
those unique key index columns if NULL values are not used. Depending on its design, a database table may
have many unique key indexes but at most one primary key index.

(via Wikipedia)

See Also:

http://en.wikipedia.org/wiki/Unique_key#Defining_unique_keys

WHERE clause A component of the SELECT statement which specifies logical criteria to be applied to each row
retrieved from the FROM clause. The SELECT statement discards all rows which do not evaluate to “true” for
a given WHERE clause.

Below, we select rows from the email_address table, but use the WHERE clause to limit the results to only
those rows which refer to email addresses that contain @gmail.com:

SELECT id, email_address FROM email_address
WHERE email_address LIKE ’%@gmail.com’

4.1. Relational Terms 30

http://en.wikipedia.org/wiki/Database_transaction
http://en.wikipedia.org/wiki/Unique_key#Defining_unique_keys


PyCon 2013 - Introduction to SQLAlchemy, Release 1

4.2 SQLAlchemy Core / Object Relational Terms

association relationship A two-tiered relationship which links two tables together using an association table in
the middle. The association relationship differs from a many to many relationship in that the many-to-many
table is mapped by a full class, rather than invisibly handled by the sqlalchemy.orm.relationship()
construct as in the case with many-to-many, so that additional attributes are explicitly available.

For example, if we wanted to associate employees with projects, also storing the specific role for that employee
with the project, the relational schema might look like:

CREATE TABLE employee (
id INTEGER PRIMARY KEY,
name VARCHAR(30)

)

CREATE TABLE project (
id INTEGER PRIMARY KEY,
name VARCHAR(30)

)

CREATE TABLE employee_project (
employee_id INTEGER PRIMARY KEY,
project_id INTEGER PRIMARY KEY,
role_name VARCHAR(30),
FOREIGN KEY employee_id REFERENCES employee(id),
FOREIGN KEY project_id REFERENCES project(id)

)

A SQLAlchemy declarative mapping for the above might look like:

class Employee(Base):
__tablename__ = ’employee’

id = Column(Integer, primary_key)
name = Column(String(30))

class Project(Base):
__tablename__ = ’project’

id = Column(Integer, primary_key)
name = Column(String(30))

class EmployeeProject(Base):
__tablename__ = ’employee_project’

employee_id = Column(Integer, ForeignKey(’employee.id’), primary_key=True)
project_id = Column(Integer, ForeignKey(’project.id’), primary_key=True)
role_name = Column(String(30))

project = relationship("Project", backref="project_employees")
employee = relationship("Employee", backref="employee_projects")

Employees can be added to a project given a role name:

proj = Project(name="Client A")

emp1 = Employee(name="emp1")

4.2. SQLAlchemy Core / Object Relational Terms 31

http://www.sqlalchemy.org/docs/orm/relationships.html#sqlalchemy.orm.relationship


PyCon 2013 - Introduction to SQLAlchemy, Release 1

emp2 = Employee(name="emp2")

proj.project_employees.extend([
EmployeeProject(employee=emp1, role="tech lead"),
EmployeeProject(employee=emp2, role="account executive")

])

See Also:

many to many

attribute In Python, a field of an instance or class. Essentially, any time the ”.” operator is used to access a field from
a parent record, you’re dealing with attribute access.

Below, the Car class has attributes color and model:

class Car(object):
color = "green"
model = "Dodge"

and attributes are accessed using the ”.” operator:

print("Color: %s" % Car.color)

In SQLAlchemy, an ORM mapped class is instrumented using Python descriptors to provide attributes that have
additional behaviors used by the mapper, including that changes in value are detected and also that SQL load
operations can transparently occur when they are first accessed (known as lazy loading).

autocommit This refers to a behavior whereby individual statements are automatically committed to the database
after execution, essentially removing the need to explicitly demarcate the beginining and end of a transactional
block. Autocommit is something that can take place at many levels and in different ways; some databases will
start an interactive SQL session with autocommit implicitly enabled, and others will not, requiring that the user
invoke an explicit COMMIT statement in order to commit any changes.

When using the Python DBAPI, the connection object provided by DBAPI is always non-autocommitting
by default; that is, the user must call connection.commit() in order for the effect of any statements to be
committed. Some DBAPIs offer “autocommit” options, but these are not standard.

SQLAlchemy’s take on autocommit is that operations which involve executing statements using the Core
Engine or Connection objects are by default autocommitting if the statement represents one that modi-
fies data. If one wants to control the scope of these transactions explicitly, this control is readily available via the
begin() method. The rationale here is that the Core can be expediently used in a “one-off” style for scripting
without the need to deal with transaction demarcation if not needed.

However, when using the ORM Session object, the default in modern versions is that the commit() method
must be called in order to commit the ongoing transaction. The rationale for this is so that the unit of work
pattern can be used most effectively, where it can safely autoflush data to the database automatically knowing
that it’s not implicitly permanent, as well as that the explicit commit step provides a clear boundary as to when
the ORM-mapped objects should be expired so that they can re-load their state from the database. Ironically,
the explicit commit pattern of the Session ultimately allows for code that is more succinct than if autocommit
were turned on, as without it, it’s often the case that flushing and expiration must be handled manually.

backref An extension to the relationship system whereby two distinct relationship() objects can be mutually
associated with each other, such that they coordinate in memory as changes occur to either side. The most com-
mon way these two relationships are constructed is by using the relationship() function explicitly for one
side and specifying the backref keyword to it so that the other relationship() is created automatically.
We can illustrate this against the example we’ve used in one to many as follows:

class Department(Base):
__tablename__ = ’department’

4.2. SQLAlchemy Core / Object Relational Terms 32

http://www.sqlalchemy.org/docs/core/connections.html#sqlalchemy.engine.Engine
http://www.sqlalchemy.org/docs/core/connections.html#sqlalchemy.engine.Connection
http://www.sqlalchemy.org/docs/core/connections.html#sqlalchemy.engine.Connection.begin
http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session
http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session.commit
http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session
http://www.sqlalchemy.org/docs/orm/relationships.html#sqlalchemy.orm.relationship
http://www.sqlalchemy.org/docs/orm/relationships.html#sqlalchemy.orm.relationship
http://www.sqlalchemy.org/docs/orm/relationships.html#sqlalchemy.orm.relationship


PyCon 2013 - Introduction to SQLAlchemy, Release 1

id = Column(Integer, primary_key=True)
name = Column(String(30))
employees = relationship("Employee", backref="department")

class Employee(Base):
__tablename__ = ’employee’
id = Column(Integer, primary_key=True)
name = Column(String(30))
dep_id = Column(Integer, ForeignKey(’department.id’))

A backref can be applied to any relationship, including one to many, many to one, and many to many.

See Also:

relationship

one to many

many to one

many to many

bind, bound This term refers to the association of a connection-producing object, usually an engine, with a query-
producing object, which in modern usage is usually a session object, and in less common usage a metadata
object.

Most of SQLAlchemy’s usage patterns involve dealing with objects that produce SQL queries to be emitted to a
database. But it makes a distinction between these objects and objects that represent actual database connections,
or a source of database connections.

For example, we can create an ORM Session object:

>>> from sqlalchemy.orm import Session
>>> session = Session()

But if we try to execute a query with it, we’d get an error:

>>> session.scalar("select current_timestamp")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/classic/dev/sqlalchemy/lib/sqlalchemy/orm/session.py", line 921, in scalar

clause, params=params, mapper=mapper, bind=bind, **kw).scalar()
File "/Users/classic/dev/sqlalchemy/lib/sqlalchemy/orm/session.py", line 912, in execute

bind = self.get_bind(mapper, clause=clause, **kw)
File "/Users/classic/dev/sqlalchemy/lib/sqlalchemy/orm/session.py", line 1083, in get_bind

’, ’.join(context)))
sqlalchemy.exc.UnboundExecutionError: Could not

locate a bind configured on SQL expression or this Session

This is because we haven’t given this Session a source of connectivity. We can make one using
create_engine() and attaching it using .bind:

>>> from sqlalchemy import create_engine
>>> engine = create_engine("sqlite://")
>>> session.bind = engine
>>> session.scalar("select current_timestamp")
u’2013-02-18 21:13:31’

Binding gets more elaborate than this, as a Session can be bound to multiple databases at once; some use
cases also involve binding the session directly to an individual connection object, rather than to an engine. The
practice of using binds with a Core metadata object is also something seen commonly, though we’ve tried to
discourage the use of this pattern as it tends to be overused and misunderstood.

4.2. SQLAlchemy Core / Object Relational Terms 33

http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session
http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session
http://www.sqlalchemy.org/docs/core/engines.html#sqlalchemy.create_engine
http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session


PyCon 2013 - Introduction to SQLAlchemy, Release 1

cascade The propagation of particular lifecycle events from one mapped instance to another, following along the
paths formed by relationships between mappings.

An example of the most common cascade is the save-update cascade, which states that if an object is
associated with a parent, then that object should also be associated with the same session as that parent:

>>> from sqlalchemy.orm import Session
>>> session = Session()
>>> user_obj = User()
>>> session.add(user_obj)
>>> user_obj in session
True
>>> address_obj = Address()
>>> user_obj.addresses.append(address_obj)
>>> address_obj in session
True

Above, we associated an Address object with a parent User object by appending it to the mapped
User.addresses collection. As a result, that Address object became associated with the same Session
object as that of the User.

The behavior of cascades is customizable, but in most cases the default cascade of save-update remains in
place.

There are two optional cascades known as delete and delete-orphan which are also very prominent.
These cascades add on the behavior that the child object should also be deleted when the parent object is
deleted, and additionally that the child object should be deleted when detached from any parent.

The concept of configurable cascade behavior was part of the SQLAlchemy ORM very early on and was inspired
by the same configurability in the Hibernate ORM.

See Also:

Cascades - in the SQLAlchemy documentation

Configuring delete/delete-orphan Cascade - in the SQLAlchemy documentation

collection In the SQLAlchemy ORM, this refers to a series of objects associated with a parent object, using a re-
lationship to manage these associations. A collection corresponds to either a one to many or many to many
relationship, and can be managed in Python by a variety of data types, the most common being the Python
list(), but also including the Python set(), the Python dict(), as well as any user-defined type which
corresponds to certain interfaces.

When starting out with the SQLAlchemy ORM, we generally stick to plain lists and sets for collections. Dictio-
naries and custom-build collections are generally for more advanced usage patterns.

See Also:

Collection Configuration and Techniques - advanced collection options, in the SQLAlchemy documentation

connection Refers to an active database handle. The term “connection” can refer to different specific constructs;
the most fundamental is the “connection” object provided by the Python DBAPI. In SQLAlchemy, the DBAPI
connection is normally maintained transparently behind a facade known as the Connection object. This
object is obtained from a engine object, and has a one-to-one correspondence with a DBAPI connection.

See Also:

Engine Configuration - in the SQLAlchemy documentation

Working with Engines and Connections - in the SQLAlchemy documentation

4.2. SQLAlchemy Core / Object Relational Terms 34

http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session
http://www.sqlalchemy.org/docs/orm/session.html#unitofwork-cascades
http://www.sqlalchemy.org/docs/orm/tutorial.html#tutorial-delete-cascade
http://www.sqlalchemy.org/docs/orm/collections.html#collections-toplevel
http://www.sqlalchemy.org/docs/core/connections.html#sqlalchemy.engine.Connection
http://www.sqlalchemy.org/docs/core/engines.html#engines-toplevel
http://www.sqlalchemy.org/docs/core/connections.html#connections-toplevel


PyCon 2013 - Introduction to SQLAlchemy, Release 1

connection pool An object that maintains a series of connection objects persistently in memory, allowing individual
connections to be checked out by a particular application function, used for some period of time, and then
checked in to the pool when usage of the connection is complete.

The usage of connection pools in SQLAlchemy has two primary purposes:

1. To reduce the latency involved in acquiring a database connection. By maintaining a series of connections
in memory, the overhead of the TCP/IP connection as well as the initial negotiation of the client DBAPI
library with the backend database is incurred only a limited number of times, rather than for all distinct
usages of a connection.

2. To place a limit on the number of database connections a single Python process can use at once.
SQLAlchemy’s default connection pool allows the specification of a pool size as well as max overflow pa-
rameters; the size indicates the largest number of connections that should be held in memory persistently,
and the max overflow indicates an optional additional number of connections that may be temporarily
procured on top of the base size.

The SQLAlchemy engine object maintains a reference to a connection pool where it retrieves and stores
DBAPI connections - in most cases this pool is an instance of sqlalchemy.pool.QueuePool. Con-
nection pooling can be disabled for a particular engine by replacing the pool implementation with the so-called
sqlalchemy.pool.NullPool, which has the same interface as a pool but doesn’t actually maintain con-
nections persistently.

Note that SQLAlchemy’s built-in pooling is only one style of pooling, known as application level pooling. An
architecture can also use pool middleware, i.e., a server that runs separately and mediates connectivity between
one or more applications and a database backend. The PgBouncer product is one such middleware service
designed for usage with Postgresql.

See Also:

Connection Pooling

DBAPI DBAPI is shorthand for the phrase “Python Database API Specification”. This is a widely used speci-
fication within Python to define common usage patterns for all database connection packages. The DBAPI
is a “low level” API which is typically the lowest level system used in a Python application to talk to a
database. SQLAlchemy’s dialect system is constructed around the operation of the DBAPI, providing indi-
vidual dialect classes which service a specific DBAPI on top of a specific database engine; for example, the
create_engine() URL postgresql+psycopg2://@localhost/test refers to the psycopg2
DBAPI/dialect combination, whereas the URL mysql+mysqldb://@localhost/test refers to the
MySQL for Python DBAPI/dialect combination.

See Also:

PEP 249 - Python Database API Specification v2.0: http://www.python.org/dev/peps/pep-0249/

declarative An API included with the SQLAlchemy ORM that in modern usage serves as the primary system used to
configure the ORM. The central idea of the declarative system is that one defines a class to be mapped, and then
applies to this class a series of directives which denote the table metadata to be associated with this class, which
establishes the table(s) and columns that this class will be associated with when the ORM performs queries.

The declarative system provides a relatively concise and very extensible series of patterns allowing not just for
basic class mapping, but also allowing the construction of repeatable and composable mapping patterns using
custom base classes, abstract classes, and mixins.

See Also:

Object Relational Tutorial

Declarative

4.2. SQLAlchemy Core / Object Relational Terms 35

http://www.sqlalchemy.org/docs/core/pooling.html#sqlalchemy.pool.QueuePool
http://www.sqlalchemy.org/docs/core/pooling.html#sqlalchemy.pool.NullPool
http://wiki.postgresql.org/wiki/PgBouncer
http://www.sqlalchemy.org/docs/core/pooling.html#pooling-toplevel
http://www.sqlalchemy.org/docs/dialects/postgresql.html#sqlalchemy.dialects.postgresql.psycopg2
http://www.sqlalchemy.org/docs/dialects/mysql.html#sqlalchemy.dialects.mysql.mysqldb
http://www.python.org/dev/peps/pep-0249/
http://www.sqlalchemy.org/docs/orm/tutorial.html#ormtutorial-toplevel
http://www.sqlalchemy.org/docs/orm/extensions/declarative.html#declarative-toplevel


PyCon 2013 - Introduction to SQLAlchemy, Release 1

descriptor, descriptors In Python, a descriptor is an object attribute with “binding behavior” whose attribute ac-
cess has been overridden by methods in the descriptor protocol. Those methods are __get__(), __set__(), and
__delete__(). If any of those methods are defined for an object, it is said to be a descriptor.

In SQLAlchemy, descriptors are used heavily in order to provide attribute behavior on mapped classes. When a
class is mapped as such:

class MyClass(Base):
__tablename__ = ’foo’

id = Column(Integer, primary_key=True)
data = Column(String)

The MyClass class will be mapped when its definition is complete, at which point the id and data
attributes, starting out as sqlalchemy.schema.Column objects, will be replaced by the instru-
mentation system with customized descriptor objects, providing special behavior for the __get__(),
__set__() and __delete__() methods. The descriptors (for the curious, they are instances of
sqlalchemy.orm.attributes.InstrumentedAttribute, though this detail is generally transpar-
ent) will generate a SQL expression when used at the class level:

>>> print MyClass.data == 5
data = :data_1

When used at the instance level, these descriptors help to keep track of changes to values, and also lazy load
unloaded values and collections from the database when the attribute is accessed.

detached This describes one of the four major object states which an object can have within a session; a detached
object is an object that has a database identity (i.e. a primary key) but is not associated with any session. An
object that was previously persistent and was removed from its session either because it was expunged, or the
owning session was closed, moves into the detached state. The detached state is generally used when objects
are being moved between sessions or when being moved to/from an external object cache.

See Also:

Quickie Intro to Object States - in the SQLAlchemy documentation

engine An object that provides a source of database connectivity. The Engine object maintains a connection pool,
which keeps track of a series of DBAPI connection objects, as well as a dialect, which keeps track of all the
information known about the particular kind of database and Python driver being used by this particular engine.
An Engine is created using the create_engine() factory function, and a database connection can be
requested from the Engine using the connect() method:

>>> from sqlalchemy import create_engine
>>> engine = create_engine("postgresql://scott:tiger@localhost/test")
>>> connection = engine.connect()
>>> connection.scalar("SELECT now()")
datetime.datetime(2013, 2, 18, 18, 26, 37)
>>> connection.close()

While the above pattern illustrates a literal, rudimentary use of Engine, it’s normally used in a more abstracted
way than the above. When dealing with the SQLAlchemy ORM, the Engine is usually bound to an ORM
session object when the program starts, where it then remains hidden as a source of connectivity for that session.

The primary facade for a database. An Engine manages a pool of database connections and provides methods
to execute SQL statements and fetch result sets.

See Also:

Engine Configuration - in the SQLAlchemy documentation

Working with Engines and Connections - in the SQLAlchemy documentation

4.2. SQLAlchemy Core / Object Relational Terms 36

http://docs.python.org/howto/descriptor.html
http://www.sqlalchemy.org/docs/core/schema.html#sqlalchemy.schema.Column
http://www.sqlalchemy.org/docs/orm/internals.html#sqlalchemy.orm.attributes.InstrumentedAttribute
http://www.sqlalchemy.org/docs/orm/session.html#session-object-states
http://www.sqlalchemy.org/docs/core/connections.html#sqlalchemy.engine.Engine
http://www.sqlalchemy.org/docs/core/connections.html#sqlalchemy.engine.Engine
http://www.sqlalchemy.org/docs/core/engines.html#sqlalchemy.create_engine
http://www.sqlalchemy.org/docs/core/connections.html#sqlalchemy.engine.Engine
http://www.sqlalchemy.org/docs/core/connections.html#sqlalchemy.engine.Engine.connect
http://www.sqlalchemy.org/docs/core/connections.html#sqlalchemy.engine.Engine
http://www.sqlalchemy.org/docs/core/connections.html#sqlalchemy.engine.Engine
http://www.sqlalchemy.org/docs/core/engines.html#engines-toplevel
http://www.sqlalchemy.org/docs/core/connections.html#connections-toplevel


PyCon 2013 - Introduction to SQLAlchemy, Release 1

flush The operation by which a session emits INSERT, UPDATE and DELETE statements to the database in response
to the accumulation of a series of in-memory changes to objects. The flush operation is a key component of the
unit of work pattern, and is normally invoked before the Session emits a new SELECT statement, as well as
right before the Session commits a transaction.

See Also:

Flushing - in the SQLAlchemy documentation

identity map A mapping between Python objects and their database identities. The identity map is a collection
that’s associated with an ORM session object, and maintains a single instance of every database object keyed
to its identity. The advantage to this pattern is that all operations which occur for a particular database identity
are transparently coordinated onto a single object instance. When using an identity map in conjunction with
an isolated transaction, having a reference to an object that’s known to have a particular primary key can be
considered from a practical standpoint to be a proxy to the actual database row.

See Also:

Martin Fowler - Identity Map - http://martinfowler.com/eaaCatalog/identityMap.html

instance Refers to an instantiated object, that is, the result of calling the constructor of a Python class.

We use this term to specify that we are dealing with a stateful Python object, rather than the class. Suppose we
have a class called User:

class User(object):
def __init__(self, name):

self.name = name

The above Python code represents only the class User, and not an actual instance. The instance refers to when
we construct a User, and in this case assign to it a .name attribute:

my_user = User(’some user’)

The SQLAlchemy ORM deals heavily with user-defined classes and instances of those classes; therefore
throughout its documentation as well as its source code, it’s important that we keep straight whether we’re
dealing with a class or an instance of one.

instrumentation, instrumented Instrumentation refers to the process of augmenting the functionality and attribute
set of a particular class. Ideally, the behavior of an instrumented class should remain close to a regular class,
except that additional behviors and features are made available. The SQLAlchemy mapping process, among
other things, adds database-enabled descriptors to a mapped class which each represent a particular database
column or relationship to a related class.

lazy load, lazy loads, lazy loading In object relational mapping, a “lazy load” refers to an attribute that does not
contain its database-side value for some period of time, typically when the object is first loaded. Instead, the
attribute receives a memoization that causes it to go out to the database and load its data when it’s first used.
Using this pattern, the complexity and time spent within object fetches can sometimes be reduced, in that
attributes for related tables don’t need to be addressed immediately.

See Also:

Martin Fowler - Lazy Load - http://martinfowler.com/eaaCatalog/lazyLoad.html

N plus one problem

many to many A style of sqlalchemy.orm.relationship() which links two tables together via an inter-
mediary table in the middle. Using this configuration, any number of rows on the left side may refer to any
number of rows on the right, and vice versa.

A schema where employees can be associated with projects:

4.2. SQLAlchemy Core / Object Relational Terms 37

http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session
http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session
http://www.sqlalchemy.org/docs/orm/session.html#session-flushing
http://martinfowler.com/eaaCatalog/identityMap.html
http://docs.python.org/glossary.html#term-class
http://martinfowler.com/eaaCatalog/lazyLoad.html
http://www.sqlalchemy.org/docs/orm/relationships.html#sqlalchemy.orm.relationship


PyCon 2013 - Introduction to SQLAlchemy, Release 1

CREATE TABLE employee (
id INTEGER PRIMARY KEY,
name VARCHAR(30)

)

CREATE TABLE project (
id INTEGER PRIMARY KEY,
name VARCHAR(30)

)

CREATE TABLE employee_project (
employee_id INTEGER PRIMARY KEY,
project_id INTEGER PRIMARY KEY,
FOREIGN KEY employee_id REFERENCES employee(id),
FOREIGN KEY project_id REFERENCES project(id)

)

Above, the employee_project table is the many-to-many table, which naturally forms a composite primary
key consisting of the primary key from each related table.

In SQLAlchemy, the sqlalchemy.orm.relationship() function can represent this style of relationship
in a mostly transparent fashion, where the many-to-many table is specified using plain table metadata:

class Employee(Base):
__tablename__ = ’employee’

id = Column(Integer, primary_key)
name = Column(String(30))

projects = relationship(
"Project",
secondary=Table(’employee_project’, Base.metadata,

Column("employee_id", Integer, ForeignKey(’employee.id’),
primary_key=True),

Column("project_id", Integer, ForeignKey(’project.id’),
primary_key=True)

),
backref="employees"
)

class Project(Base):
__tablename__ = ’project’

id = Column(Integer, primary_key)
name = Column(String(30))

Above, the Employee.projects and back-referencing Project.employees collections are defined:

proj = Project(name="Client A")

emp1 = Employee(name="emp1")
emp2 = Employee(name="emp2")

proj.employees.extend([emp1, emp2])

See Also:

association relationship

relationship

4.2. SQLAlchemy Core / Object Relational Terms 38

http://www.sqlalchemy.org/docs/orm/relationships.html#sqlalchemy.orm.relationship


PyCon 2013 - Introduction to SQLAlchemy, Release 1

one to many

many to one

many to one A style of relationship() which links a foreign key in the parent mapper’s table to the primary
key of a related table. Each parent object can then refer to exactly zero or one related object.

The related objects in turn will have an implicit or explicit one to many relationship to any number of parent
objects that refer to them.

An example many to one schema (which, note, is identical to the one to many schema):

CREATE TABLE department (
id INTEGER PRIMARY KEY,
name VARCHAR(30)

)

CREATE TABLE employee (
id INTEGER PRIMARY KEY,
name VARCHAR(30),
dep_id INTEGER REFERENCES department(id)

)

The relationship from employee to department is many to one, since many employee records can be
associated with a single department. A SQLAlchemy mapping might look like:

class Department(Base):
__tablename__ = ’department’
id = Column(Integer, primary_key=True)
name = Column(String(30))

class Employee(Base):
__tablename__ = ’employee’
id = Column(Integer, primary_key=True)
name = Column(String(30))
dep_id = Column(Integer, ForeignKey(’department.id’))
department = relationship("Department")

See Also:

relationship

one to many

backref

mapped, mapper, mapping We say a class is “mapped” when it has been passed through the
sqlalchemy.orm.mapper() function. This process associates the class with a database table or
other selectable construct, so that instances of it can be persisted and loaded using a session object.

Modern usage of the SQLAlchemy ORM typically “maps” classes using the declarative system, which provides
a relatively concise and very extensible series of patterns allowing classes to be mapped. The declarative system
actually rides on top of the so-called Classical Mappings system, which is more fundamental and less automated.
Early versions of SQLAlchemy only featured the classical mapping system.

metadata, table metadata A collection of related Table objects. These objects collected together may define
ForeignKey objects which refer to other tables as dependencies. The full collection of tables can be created
and dropped in a target database schema en masse.

See Also:

Schema Definition Language - in the SQLAlchemy documentation

4.2. SQLAlchemy Core / Object Relational Terms 39

http://www.sqlalchemy.org/docs/orm/relationships.html#sqlalchemy.orm.relationship
http://www.sqlalchemy.org/docs/orm/mapper_config.html#sqlalchemy.orm.mapper
http://www.sqlalchemy.org/docs/orm/mapper_config.html#classical-mapping
http://www.sqlalchemy.org/docs/core/schema.html#metadata-toplevel


PyCon 2013 - Introduction to SQLAlchemy, Release 1

N plus one problem The N plus one problem is a common side effect of the lazy load pattern, whereby an application
wishes to iterate through a related attribute or collection on each member of a result set of objects, where that
attribute or collection is set to be loaded via the lazy load pattern. The net result is that a SELECT statement is
emitted to load the initial result set of parent objects; then, as the application iterates through each member, an
additional SELECT statement is emitted for each member in order to load the related attribute or collection for
that member. The end result is that for a result set of N parent objects, there will be N + 1 SELECT statements
emitted.

The N plus one problem is alleviated using eager loading.

one to many A style of relationship() which links the primary key of the parent mapper’s table to the foreign
key of a related table. Each unique parent object can then refer to zero or more unique related objects.

The related objects in turn will have an implicit or explicit many to one relationship to their parent object.

An example one to many schema (which, note, is identical to the many to one schema):

CREATE TABLE department (
id INTEGER PRIMARY KEY,
name VARCHAR(30)

)

CREATE TABLE employee (
id INTEGER PRIMARY KEY,
name VARCHAR(30),
dep_id INTEGER REFERENCES department(id)

)

The relationship from department to employee is one to many, since many employee records can be
associated with a single department. A SQLAlchemy mapping might look like:

class Department(Base):
__tablename__ = ’department’
id = Column(Integer, primary_key=True)
name = Column(String(30))
employees = relationship("Employee")

class Employee(Base):
__tablename__ = ’employee’
id = Column(Integer, primary_key=True)
name = Column(String(30))
dep_id = Column(Integer, ForeignKey(’department.id’))

See Also:

relationship

many to one

backref

pending This describes one of the four major object states which an object can have within a session; a pending
object is a new object that doesn’t have any database identity, but has been recently associated with a session.
When the session emits a flush and the row is inserted, the object moves to the persistent state.

See Also:

Quickie Intro to Object States - in the SQLAlchemy documentation

persistent This describes one of the four major object states which an object can have within a session; a persistent
object is an object that has a database identity (i.e. a primary key) and is currently associated with a session.
Any object that was previously pending and has now been inserted is in the persistent state, as is any object

4.2. SQLAlchemy Core / Object Relational Terms 40

http://www.sqlalchemy.org/docs/orm/relationships.html#sqlalchemy.orm.relationship
http://www.sqlalchemy.org/docs/orm/session.html#session-object-states


PyCon 2013 - Introduction to SQLAlchemy, Release 1

that’s been loaded by the session from the database. When a persistent object is removed from a session, it is
known as detached.

See Also:

Quickie Intro to Object States - in the SQLAlchemy documentation

reflection The process of constructing SQLAlchemy Table objects in an automated or semi-automated fashion,
where information about tables, columns and constraints are loaded from an existing database’s internal catalogs
in order to compose in-memory structures representing a schema.

See Also:

Reflecting Database Objects

relationship, relationships A connecting unit between two mapped classes, corresponding to some relationship
between the two tables in the database.

The relationship is defined using the SQLAlchemy function relationship(). Once created, SQLAlchemy
inspects the arguments and underlying mappings involved in order to classify the relationship as one of three
types: one to many, many to one, or many to many. With this classification, the relationship construct handles
the task of persisting the appropriate linkages in the database in response to in-memory object associations, as
well as the job of loading object references and collections into memory based on the current linkages in the
database.

See Also:

Relationship Configuration - in the SQLAlchemy documentation

scoped session A helper object intended to provide a registry of session objects, allowing an application to refer to
the registry as a global variable which provides access to a contextually appropriate session object.

The scoped session object is an optional construct often used with web applications.

See Also:

Session

Contextual/Thread-local Sessions - an in-depth introduction to the sqlalchemy.orm.scoped_session
object, in the SQLAlchemy documentation

selectable Refers to the SQLAlchemy analogue for a “relation” in relational algebra, which is any object that rep-
resents a series of rows in a database. “Selectable” actually refers in the API to objects that extend from the
sqlalchemy.sql.expression.Selectable class, and refers to such row-representing constructs as
the Table, the Join, and the Select construct.

Session The container or scope for ORM database operations. Sessions load instances from the database, track
changes to mapped instances and persist changes in a single unit of work when flushed.

See Also:

Using the Session

sessionmaker A factory for session objects. The sessionmaker construct basically allows a series of parameters
to be associated with a Session constructor.

In reality, the sessionmaker is just slightly more elaborate than a simple function. An expression like this:

from sqlalchemy.orm import sessionmaker
my_session = sessionmaker(bind=engine, autoflush=False)

is conceptually very similar to the following:

from sqlalchemy.orm import Session
my_session = lambda: Session(bind=engine, autoflush=False)

4.2. SQLAlchemy Core / Object Relational Terms 41

http://www.sqlalchemy.org/docs/orm/session.html#session-object-states
http://www.sqlalchemy.org/docs/core/schema.html#sqlalchemy.schema.Table
http://www.sqlalchemy.org/docs/core/schema.html#metadata-reflection
http://www.sqlalchemy.org/docs/orm/relationships.html#sqlalchemy.orm.relationship
http://www.sqlalchemy.org/docs/orm/relationships.html#relationship-config-toplevel
http://www.sqlalchemy.org/docs/orm/session.html#unitofwork-contextual
http://www.sqlalchemy.org/docs/core/expression_api.html#sqlalchemy.sql.expression.Selectable
http://www.sqlalchemy.org/docs/core/schema.html#sqlalchemy.schema.Table
http://www.sqlalchemy.org/docs/core/expression_api.html#sqlalchemy.sql.expression.Join
http://www.sqlalchemy.org/docs/core/expression_api.html#sqlalchemy.sql.expression.Select
http://www.sqlalchemy.org/docs/orm/session.html#session-toplevel
http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.sessionmaker
http://www.sqlalchemy.org/docs/orm/session.html#sqlalchemy.orm.session.Session


PyCon 2013 - Introduction to SQLAlchemy, Release 1

See Also:

Session

scoped session

threadlocal A shared data structure whose data members are visible only to the thread which set them. The concept
of “thread local” in Python is normally provided by the threading.local construct.

See Also:

http://docs.python.org/2/library/threading.html#threading.local

transient This describes one of the four major object states which an object can have within a session; a transient
object is a new object that doesn’t have any database identity and has not been associated with a session yet.
When the object is added to the session, it moves to the pending state.

See Also:

Quickie Intro to Object States - in the SQLAlchemy documentation

unit of work This pattern is where the system transparently keeps track of changes to objects and periodically flushes
all those pending changes out to the database. SQLAlchemy’s Session implements this pattern fully in a manner
similar to that of Hibernate.

See Also:

Martin Fowler - Unit of Work - http://martinfowler.com/eaaCatalog/unitOfWork.html

Using the Session - in the SQLAlchemy documentation

4.2. SQLAlchemy Core / Object Relational Terms 42

http://docs.python.org/2/library/threading.html#threading.local
http://www.sqlalchemy.org/docs/orm/session.html#session-object-states
http://martinfowler.com/eaaCatalog/unitOfWork.html
http://www.sqlalchemy.org/docs/orm/session.html#session-toplevel


CHAPTER

FIVE

FURTHER READING

Credit to Jason Kirtland for assembling this list.

• Celko, J. (2010) SQL for Smarties. Morgan Kaufmann.

A sprawling book with many gems of SQL knowledge. This book is now up to its fourth edition and seems to
have been modified quite a bit.

• The SQL92 Standard

Available as a .txt file from http://en.wikipedia.org/wiki/SQL-92

• Harrington, J. (2003) SQL Clearly Explained. Morgan Kaufmann.

Exactly what the title claims.

• Schmidt, B. (1999) Data Modeling for Information Professionals. Prentice Hall PTR.

A fantastic resource for anyone in any profession who needs to think critically about information and its struc-
ture.

• Nock, C. (2004) Data Access Patterns. Addison-Wesley.

• Fowler, M. (2002) Patterns of Enterprise Application Architecture. Addison-Wesley Professional.

• Schmidt, D., et al. (2000) Pattern-Oriented Software Architecture volume 2, Patterns for Concurrent and Net-
worked Objects. Wiley.

These three delve into the the mechanics of data access and strategies for concurrency. Patterns of Enterprise Ap-
plication Architecture was a primary inspiration for the creation of SQLAlchemy itself. The blog post Patterns
Implemented by SQLAlchemy (http://techspot.zzzeek.org/2012/02/07/patterns-implemented-by-sqlalchemy) de-
tails this.

• Hay, D. (1996) Data Model Patterns, Conventions of Thought. Dorset House.

• Fowler, M. (1997) Analysis Patterns. Addison-Wesley.

Both books provide good schema advice and domain knowledge for classic topics such as accounting.

43

http://en.wikipedia.org/wiki/SQL-92
http://techspot.zzzeek.org/2012/02/07/patterns-implemented-by-sqlalchemy


INDEX

A
ACID, 22
ACID model, 22
association relationship, 31
atomicity, 22
attribute, 32
autocommit, 32

B
backref, 32
bind, 33
bound, 33

C
candidate key, 22
cartesian product, 22
cascade, 34
check constraint, 23
collection, 34
column, 23
columns, 23
columns clause, 23
commit, 23
connection, 34
connection pool, 35
consistency, 23
constraint, 23
constraints, 23
correlated subqueries, 23
correlated subquery, 23

D
data definition language, 24
data manipulation language, 24
DBAPI, 35
DDL, 24
declarative, 35
descriptor, 36
descriptors, 36
detached, 36
DML, 24

durability, 24

E
Edgar Codd, 24
Edgar F. Codd, 24
engine, 36
EXISTS, 24
EXISTS operator, 24

F
flush, 37
foreign key constraint, 25
FROM clause, 25

I
identity map, 37
IN, 25
IN operator, 25
inner join, 26
instance, 37
instrumentation, 37
instrumented, 37
isolated, 26
isolation, 26

J
join, 26

L
lazy load, 37
lazy loading, 37
lazy loads, 37
left outer join, 26

M
many to many, 37
many to one, 39
mapped, 39
mapper, 39
mapping, 39
metadata, 39

44



PyCon 2013 - Introduction to SQLAlchemy, Release 1

multi version concurrency control, 27
MVCC, 27

N
N plus one problem, 40
natural primary key, 27
normalization, 27

O
one to many, 40

P
pending, 40
persistent, 40
primary key, 27
primary key constraint, 27

Q
queries, 28
query, 28

R
reflection, 41
relation, 28
relational algebra, 28
relational model, 28
relations, 28
relationship, 41
relationships, 41
right outer join, 28
rollback, 28
row, 28
row value, 30
rows, 28
rowset, 30

S
scalar, 28
scalar subqueries, 28
scalar subquery, 28
scalar value, 28
scoped session, 41
selectable, 41
Session, 41
sessionmaker, 41
SQL, 29
Structured Query Language, 29
subquery, 29
surrogate primary key, 29

T
table, 29
table metadata, 39

table value, 30
threadlocal, 42
transaction, 30
transactional, 30
transient, 42
tuple, 30
tuples, 30

U
uncorrelated subquery, 30
unique constraint, 30
unique key index, 30
unit of work, 42

W
WHERE clause, 30

Index 45


	Front Matter
	Purpose of this Document
	Web Site
	Mailing List
	IRC Channel
	Presenters / Credits

	Package Setup
	Contents
	Prerequisites
	Obtaining the Package
	Building the Documentation Handout
	Installing the Slide Environment

	Relational Database Review
	Introduction
	Overview
	Relational Schemas
	Data Manipulation Language (DML)
	Queries
	ACID Model

	Glossary
	Relational Terms
	SQLAlchemy Core / Object Relational Terms

	Further Reading
	Index

