
SQLAlchemy:
an Architectural
Retrospective

Front Matter

• This talk is loosely based on
the SQLAlchemy chapter I'm
writing for The Architecture of
Open Source Applications

• http://www.aosabook.org/
en/index.html

Introduction

• SQLAlchemy, the Database Toolkit for Python

• Introduced in 2005

• End-to-end system for working with the Python
DBAPI

• Got early attention fast: fluent SQL, ORM with Unit
of Work pattern

Part I - Philosophy

"Abstraction"

• When we talk about relational database tools, the
term "database abstraction layer" is often used.

• What is implied by "Abstraction" ?

• Conceal details of how data is stored and queried?

• Should an abstraction layer conceal even that the
database is relational ?

• Should it talk to S3, MongoDB, DBM files just like a
SQL database ?

• In this definition, "abstraction" means "hiding".

Problems with "abstraction=hiding"

• SQL language involves "relations" (i.e. tables, views,
SELECT statements) that can be sliced into subsets,
intersected on attributes (i.e. joins)

• Ability to organize and query for data in a relational
way is the primary feature of relational databases.

• Hiding it means you no longer have that capability.

• Why use a relational database then? Many alternatives
now.

• We don't want "hiding". We want "automation"!

Automation

• Provide succinct patterns that automate the usage of
lower level systems

• Establish single points of behavioral variance

• We still need to do work, know how everything
works, design all strategies!

• But we work efficiently, instructing our tools to do the
grunt work we give them.

• Use our own schema/design conventions, not
someone else's

SQLAlchemy's Approach

• The developer must consider the relational form of
the target data.

• Query and schema design decisions are all made by
the developer. Tools don't make decisions.

• Provide a rich, detailed vocabulary to express these
decisions

• Developer creates patterns and conventions based on
this vocabulary.

• Opposite to the approach of providing defaults + ways
to override some of them

An out of the box mapping
class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 username = Column(String(50), nullable=False)
 addresses = relationship("Address", backref="user",
 cascade="all, delete-orphan")

class Address(Base):
 __tablename__ = 'address'
 id = Column(Integer, primary_key=True)
 user_id = Column(Integer, ForeignKey('user.id'),
 nullable=False)
 street = Column(String(50))
 city = Column(String(50))
 state = Column(CHAR(2))
 zip = Column(String(15))

Dealing with Verbosity

• But what about how verbose that was ?

• Is that verbosity a problem when...

• Your whole app has just the two classes ? No.

• You have a large app, using those same patterns over
and over again - yes.

• Then we're writing a large app. Large apps should
have foundations!

Use a base that defines the conventions for all tables and
classes

Building a Foundation

from sqlalchemy import Column, Integer
from sqlalchemy.ext.declarative import declarative_base

class Base(object):
 """Define the base conventions for
 all tables/classes."""

 @declared_attr
 def __tablename__(cls):
 """Table is named after the class name"""
 return cls.__name__.lower()

 id = Column(Integer, primary_key=True)
 """Surrogate primary key column named 'id'"""

Base = declarative_base(cls=Base)

Use functions to represent common idioms, like
foreign key columns, datatypes that are common

Building a Foundation

def fk(tablename, nullable=False):
 """Define a convention for all foreign key columns.
 Just give it the table name."""

 return Column("%s_id" % tablename, Integer,
 ForeignKey("%s.id" % tablename),
 nullable=nullable)

Use prototypes and similar techniques for particular table
structures that are common

Building a Foundation

class AddressPrototype(object):
 """Lots of objects will have an 'address'. Let's
 build a prototype for it.'"""

 street = Column(String(50))
 city = Column(String(50))
 state = Column(CHAR(2))
 zip = Column(String(15))

Use mixins to define table/class attributes common to
subsets of the domain model

Building a Foundation

class HasAddresses(object):
 """Define classes that have a collection of
 addresses via the AddressPrototype foundation."""

 @declared_attr
 def addresses(cls):
 cls.Address = type("%sAddress" % cls.__name__,
 (AddressPrototype, Base),
 {'%s_id' % cls.__tablename__:fk(cls.__tablename__)}
)
 return relationship(cls.Address,
 backref=cls.__name__.lower(),
 cascade="all, delete-orphan")

With our conventions in place, the actual
mapping for both user/address looks like this

Use the Foundation

from myapp.base import (
 HasAddresses, Base, Column, String
)

class User(HasAddresses, Base):
 username = Column(String(50), nullable=False)

Address = User.Address

More Foundation

• More examples of convention-oriented "helpers",
including pre-fab one_to_many()/many_to_one()/
many_to_many() helpers, at http://
techspot.zzzeek.org/2011/05/17/magic-a-new-orm/

Exposing Relational Constructs

• SQLAlchemy's querying system doesn't try to hide
that a relational database is in use.

• Like "power steering" for SQL. Doesn't teach you
how to drive!

• Developer should be very aware of the SQL being
emitted. SQLAlchemy makes this easy via logging or
"echo" flag.

• Just like your car has windows to see where you're
going!

Users on a certain street with no address in NYC - a
hypothetical "relational-agnostic" way

Exposing Relational Constructs - An example

my_user = User.\
 filter(addresses__street = '123 Green Street').\
 has_none(addresses__city = "New York")[0]

obvious SQL from the above

SELECT * FROM user JOIN address ON user.id=address.user_id
WHERE address.street == '123 Green Street'
AND NOT EXISTS (
 SELECT * FROM address WHERE city='New York'
 AND user_id=user.id
)

Exposing Relational Constructs - An example

• Now I want:

• Give me all households in New York with exactly
two occupants where neither occupant has any
residences outside of the city.

• Our model isn't terrifically optimized for this query,
since the "address" rows are not normalized

• This query needs to be built relationally,referencing
relational structures explicitly and building from the
inside out

• This is why we like relational databases !

Build a query from the inside out

-- New York addresses that have two
-- occupants

SELECT street, city, zip FROM address
 WHERE city='New York'
 GROUP BY street, city, zip
 HAVING count(user_id) = 2

Build a query from the inside out

-- users who are different from each other

SELECT * FROM user AS u_1 JOIN
 user AS u_2 ON u_1.id > u_2.id

Build a query from the inside out
-- join them to their addresses, join addresses
-- to the two occupant NY addresses

SELECT * FROM user AS u_1 JOIN
 user AS u_2 ON u_1.id > u_2.id JOIN
 address AS a_1 ON u_1.id = a_1.user_id JOIN
 address AS a_2 ON u_2.id = a_2.user_id JOIN
 (SELECT street, city, zip FROM address
 WHERE city='New York'
 GROUP BY street, city, zip
 HAVING count(user_id) = 2
) AS two_occupant_ny ON (
 a_1.street=two_occupant_ny.street AND
 a_1.city=two_occupant_ny.city AND
 a_1.zip=two_occupant_ny.zip AND
 a_2.street=two_occupant_ny.street AND
 a_2.city=two_occupant_ny.city AND
 a_2.zip=two_occupant_ny.zip
)

Build a query from the inside out
-- ... who don't have a house outside of New York

SELECT * FROM user AS u_1 JOIN
 user AS u_2 ON u_1.id > u_2.id JOIN
 address AS a_1 ON u_1.id = a_1.user_id JOIN
 address AS a_2 ON u_2.id = a_2.user_id JOIN
 (SELECT street, city, zip FROM address
 WHERE city='New York'
 GROUP BY street, city, zip
 HAVING count(user_id) = 2
) AS two_occupant_ny ON (
 a_1.street == two_occupant_ny.street AND
 a_1.city == two_occupant_ny.city AND
 a_1.zip == two_occupant_ny.zip AND
 a_2.street == two_occupant_ny.street AND
 a_2.city == two_occupant_ny.city AND
 a_2.zip == two_occupant_ny.zip
) AND NOT EXISTS (SELECT * FROM address WHERE
 city!='New York' AND
 user_id=u_1.id OR
 user_id=u_2.id)

Build a query from the inside out

• SQLAlchemy gives you this same "inside out"
paradigm - you think in terms of SQL relations and
joins in the same way as when constructing plain SQL.

• SQLAlchemy can then apply automated enhancements
like eager loading, row limiting, further relational
transformations

Build a Query() from the inside out

New York addresses that have two
occupants

two_occupant_ny = \
 Session.query(Address.street, Address.city, Address.zip).\
 filter(Address.city == 'New York').\
 group_by(Address.street, Address.city, Address.zip).\
 having(func.count(Address.user_id) == 2).\
 subquery()

Build a Query() from the inside out

users who are different from each other

u_1, u_2 = aliased(User), aliased(User)

user_q = Session.query(u_1, u_2).\
 select_from(u_1).\
 join(u_2, u_1.id > u_2.id)

Build a Query() from the inside out
join them to their addresses, join addresses
to the two occupant NY addresses

a_1, a_2 = aliased(Address), aliased(Address)
user_q = user_q.\
 join(a_1, u_1.addresses).\
 join(a_2, u_2.addresses).\
 join(
 two_occupant_ny,
 and_(
 a_1.street==two_occupant_ny.c.street,
 a_1.city==two_occupant_ny.c.city,
 a_1.zip==two_occupant_ny.c.zip,
 a_2.street==two_occupant_ny.c.street,
 a_2.city==two_occupant_ny.c.city,
 a_2.zip==two_occupant_ny.c.zip,
)
)

Build a Query() from the inside out

who don't have a house outside of New York

user_q = user_q.filter(
 ~exists([Address.id]).
 where(Address.city != 'New York').\
 where(or_(
 Address.user_id==u_1.id,
 Address.user_id==u_2.id
))
)

Build a Query() from the inside out

pre-load all the Address objects for each
User too !

user_q = user_q.options(
 joinedload(u_1.addresses),
 joinedload(u_2.addresses))
users = user_q.all()

What's it look like ?
SELECT user_1.id AS user_1_id, user_1.username AS user_1_username, user_2.id AS
user_2_id, user_2.username AS user_2_username, address_1.id AS address_1_id,
address_1.street AS address_1_street, address_1.city AS address_1_city, address_1.zip
AS address_1_zip, address_1.user_id AS address_1_user_id, address_2.id AS
address_2_id, address_2.street AS address_2_street, address_2.city AS address_2_city,
address_2.zip AS address_2_zip, address_2.user_id AS address_2_user_id
FROM user AS user_1
 JOIN user AS user_2 ON user_1.id > user_2.id
 JOIN address AS address_3 ON user_1.id = address_3.user_id
 JOIN address AS address_4 ON user_2.id = address_4.user_id
 JOIN (SELECT address.street AS street, address.city AS city, address.zip AS zip
 FROM address
 WHERE address.city = ? GROUP BY address.street, address.city, address.zip
 HAVING count(address.user_id) = ?) AS anon_1 ON address_3.street = anon_1.street
AND address_3.city = anon_1.city AND address_3.zip = anon_1.zip AND address_4.street =
anon_1.street AND address_4.city = anon_1.city AND address_4.zip = anon_1.zip
 LEFT OUTER JOIN address AS address_1 ON user_1.id = address_1.user_id
 LEFT OUTER JOIN address AS address_2 ON user_2.id = address_2.user_id
WHERE NOT (EXISTS (SELECT address.id
 FROM address WHERE address.city != ? AND (address.user_id = user_1.id
OR address.user_id = user_2.id)))

--params: ('New York', 2, 'New York')

result !
User(name=u5, addresses=s1/New York/12345, s2/New York/12345, s3/New York/12345) /
User(name=u2, addresses=s2/New York/12345, s4/New York/12345, s5/New York/12345)

"Leaky Abstraction"

• Is this "leaky abstraction ?"

• You bet !

• Joel On Software - "All non-trivial abstractions, to
some degree, are leaky."

• SQLAlchemy works with this reality up front to create
the best balance possible.

• The goal is controlled automation, reduced
boilerplate, succinct patterns of usage. Not "don't
make me understand things".

Part II
Architectural Overview

The Core / ORM Dichotomy

• SQLAlchemy has two distinct areas

• Core

• Object Relational Mapper (ORM)

The Core / ORM Dichotomy

SQLAlchemy Core

SQLAlchemy ORM

SQL Expression
Language

DialectConnection
Pooling

DBAPI

Schema / Types Engine

Object Relational Mapper (ORM)

Core/ORM Dichotomy - Core

• All DBAPI interaction

• Schema description system (metadata)

• SQL expression system

• Fully usable by itself as the basis for any database-
enabled application, other ORMs, etc.

• A Core-oriented application is schema-centric

• Biggest example of a custom Core-only persistence
layer is Reddit

Core/ORM Dichotomy - ORM

• Built on top of Core. Knows nothing about DBAPI.

• Maps user-defined classes in terms of table metadata
defined with core constructs

• Maintains a local set of in-Python objects linked to an
ongoing transaction, passes data back and forth within
the transactional scope,using a unit-of-work pattern.

• Data passed uses queries that ultimately are generated
and emitted using the Core

• An ORM-oriented application is domain model
centric.

Core/ORM Dichotomy - Pros

• ORM is built agnostic of SQL rendering / DBAPI
details. All SQL/DBAPI behavior can be maintained
and extended without any ORM details being involved

• Core concepts are exposed within the ORM, allowing
one to "drop down" to more SQL/DBAPI-centric
usages within the context of ORM usage

• Early ORM was able to be highly functional, as missing
features were still possible via Core usage.

Core/ORM Dichotomy - Cons

• New users need to be aware of separation

• Performance. ORM and Core both have their own
object constructs and method calls, leading to a
greater number of objects generated, deeper call
stacks. CPython is heavily impacted by function calls.

• Pypy hopes to improve this situation - SQLAlchemy is
Pypy compatible

• Alex Gaynor hangs on #sqlalchemy-devel and runs our
tests against Pypy constantly

Selected Architectural
Highlights

Taming the DBAPI

• DBAPI is the pep-249 specification for database
interaction.

• Most Python database client libraries conform to the
DBAPI specification.

• Lots of "suggestions", "guidelines", areas left open to
interpretation

• Unicode, numerics, dates, bound parameter behavior,
behavior of execute(), result set behavior, all have wide
ranges of inconsistent behaviors.

A rudimentary SQLAlchemy Engine interaction

SQLAlchemy's Dialect System

engine = create_engine(
 "postgresql://user:pw@host/dbname")

connection = engine.connect()

result = connection.execute(
 "select * from user_table where name=?",
 "jack")

print result.fetchall()
connection.close()

SQLAlchemy's
Dialect System

Engine Dialect psycopg2
DBAPI

<<uses>>

ExecutionContext DBAPI cursor
<<uses>>

sqlalchemy.engine psycopg2

<<produces>>

Connection

<<creates>>

<<creates>>

ResultProxy

<<creates>>

<<uses>>

DBAPI
connection

<<produces>>

<<uses>>

<<uses>>

Pool

sqlalchemy.pool

<<uses>>
<<maintains>>

<<uses>>

Dealing
with

database
and

DBAPI
Variability

Dialect

DefaultDialect

PGDialect_psycopg2

PGDialect

ExecutionContext

DefaultExecutionContext

PGExecutionContext

PGExecutionContext_psycopg2

sqlalchemy.dialects.postgresql

sqlalchemy.engine
<<uses>>

Two levels
of variance

DBAPIs with Multiple Backends

Dialect

DefaultDialect

MSDialect_pyodbc

MSDialect

sqlalchemy.dialects.mssql

sqlalchemy.engine

PyODBCConnector

sqlalchemy.connectors

MySQLDialect

MySQLDialect_pyodbc

sqlalchemy.dialects.mysql

SQL Expression Constructs

• Wasn't clear in the early days how SQL expressions
should be constructed

• Strings ? Hibernate HQL ?

• statement.addWhereClause(isGreaterThan(x, 5)) ?

• ...

• Ian Bicking's SQLObject has a great idea !! Let's do
that !

We can use Python expressions and overload operators!

SQLBuilder

from sqlobject.sqlbuilder import EXISTS, Select

 select = Test1.select(EXISTS(Select(Test2.q.col2,
 where=(Test1.q.col1 == Test2.q.col2))))

This expression does not produce True or False

Operator Overloading

column('a') == 2

Instead, __eq__() is overloaded so it's equivalent to...

Operator Overloading

column('a') == 2

from sqlalchemy.sql.expression import \
 _BinaryExpression
from sqlalchemy.sql import column, bindparam
from sqlalchemy.operators import eq

_BinaryExpression(
 left=column('a'),
 right=bindparam('a', value=2, unique=True),
 operator=eq
)

Example SQL Expression

Statement:

SELECT id FROM user WHERE name = ?

SQL Expression:

from sqlalchemy import select

stmt = select([user.c.id]).where(user.c.name=='ed')

Example SQL Expression

TableClause

Select

name='user'

ColumnClause
name='id'

ColumnClause
name='name'

_BindParam
value='ed'

_BinaryExpression

left right
operator=eq

_whereclause_raw_columns

columns

_froms

In original SQLAlchemy, mappings looked like this:
first define "table metadata":

Intro to Mapping

from sqlalchemy import (MetaData, String, Integer, CHAR,
 Column, Table, ForeignKey)

metadata = MetaData()
user = Table('user', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50), nullable=False)
)

address = Table('address', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_id', Integer, ForeignKey('user.id'),
 nullable=False)
 Column('street', String(50)),
 Column('city', String(50)),
 Column('state', CHAR(2)),
 Column('zip', String(14))

... then, define classes and "map" them to the tables
using the mapper() function:

Intro to Mapping

from sqlalchemy.orm import mapper, relationship

class User(object):
 def __init__(self, name):
 self.name = name

class Address(object):
 def __init__(self, street, city, state, zip):
 self.street = street
 self.city = city
 self.state = state
 self.zip = zip

mapper(User, user, properties={
 'addresses':relationship(Address)
})

mapper(Address, address)

This strict separation of
database metadata and class
definition, linked by the also
separate mapper() step,

we now call classical mapping.

In modern SQLAlchemy, we usually use the Declarative system to
"declare" Table metadata and class mapping at the same time...

Declarative Mapping

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):
 __tablename__ = 'user'
 id = Column(Integer, primary_key=True)
 name = Column(String(50), nullable=False)
 addresses = relationship("Address")

class Address(Base):
 __tablename__ = 'address'
 id = Column(Integer, primary_key=True)
 user_id = Column(Integer, ForeignKey('user.id'),
 nullable=False)
 # ...

... or at least, the class definition and mapping. Table
metadata can still be separate...

Declarative Mapping

class User(Base):
 __table__ = user
 addresses = relationship("Address", backref="user",
 cascade="all, delete-orphan")

class Address(Base):
 __table__ = address

... or inline like this if preferred

Declarative Mapping

class User(Base):
 __table__ = Table('user', Base.metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(50), nullable=False)
)

 addresses = relationship("Address", backref="user",
 cascade="all, delete-orphan")

class Address(Base):
 __table__ = Table('address', Base.metadata,
 Column('id', Integer, primary_key=True),
 Column('user_id', Integer, ForeignKey('user.id'),
 nullable=False),
 # ...
)

What do classical
mapping, declarative

mapping, declarative with
__table__ etc. all have

in common ?

They all create a mapper() and
instrument the class in the identical way!

The mapper() Object for the User class

>>> from sqlalchemy.orm import class_mapper
>>> class_mapper(User)
<Mapper at 0x1267970; User>

They all create a mapper() and
instrument the class in the identical way!

Attributes are "instrumented" - when using Declarative, this
replaces the Column object originally placed in the class for
the "username" attribute.

>>> User.username
<sqlalchemy.orm.attributes.InstrumentedAttribute
object at 0x1267c50>

Anatomy
of a

Mapping

Mapper

Instrumented
Attribute
Scalar

AttributeImpl

ColumnProperty

ColumnLoader

Table

Column

__get__()
__set__()
__del__()

Relationship
Property

LazyLoader

OneToManyDP

Instrumented
Attribute
Collection
AttributeImpl

_sa_class_state/
class_

__get__()
__set__()
__del__()

manager/
mapper mapped_table

_props columns

property

property

columns

target related mapper

id

related

(dict)

sqlalchemy.orm.instrumentation

sqlalchemy.orm.attributes

sqlalchemy.orm.mapper

sqlalchemy.orm.properties

sqlalchemy.schema

SomeClass ClassManager

sqlalchemy.orm.strategies
sqlalchemy.orm.dependency

Fun facts about Declarative
• A "SQLObject"-like declarative layer was always

planned, since the beginning. It was delayed so that
focus could be placed on classical mappings first.

• An early extension, ActiveMapper, was introduced
and later superseded by Elixir - a declarative layer
that redefined basic mapping semantics.

• Declarative was introduced as a "one click away from
classical mapping" system, which retains standard SQLA
constructs - only rearranging how they are combined.

• zzzeek had to be convinced by Chris Withers to
support Declarative "mixins" - thanks Chris !

Unit of Work
• Unit of work's job is to find all pending data changes in

a particular Session, and emit them to the database.

• (the Session is an in-memory "holding zone" for the
mapped objects we're working with)

• Organizes pending changes into commands which emit
batches of INSERT, UPDATE, DELETE statements

• Organizes the statement batches such that dependent
statements execute after their dependencies

• In between blocks of statements, data is synchronized
from the result of a completed statement into the
parameter list of another yet to be executed.

Unit of work example
from sqlalchemy.orm import Session

session = Session(bind=some_engine)

session.add_all([
 User(name='ed'),
 User(name='jack', addresses=[address1, address2])
])

force a flush
session.flush()

Unit of work example

-- INSERT statements
BEGIN (implicit)
INSERT INTO user (name) VALUES (?)
('ed',)
INSERT INTO user (name) VALUES (?)
('jack',)

-- statements are batched if primary key already present
INSERT INTO address (id, user_id, street, city, state, zip) VALUES
(?, ?, ?, ?, ?, ?)
((1, 2, '350 5th Ave.', 'New York', 'NY', '10118'), (2, 2, '900
Market Street', 'San Francisco', 'CA', '94102'))

Dependency Sorting

• The core concept used by the UOW is the
topological sort.

• In this sort, an ordering is produced which is
compatible with a "partial ordering" - pairs of values
where one must come before the other.

Topological Sort

, , ,

A

D

C(,)
(,)B C

(,)A

DB CA

DA CB

Partial Ordering Topologically Sorted Sets

"A" comes
before "C"

"B" comes
before "C"

"A" comes
before "D"

CA DB

CB DA

, , ,
, , ,
, , ,
, , ,

CD BA

. . . etc

The Dependency Graph

• The Unit of Work sees the mapping configuration as
a "dependency graph" - Mapper objects represent
nodes, relationship() objects represent edges.

• For each "edge", the Mapper on the right is
dependent on the Mapper on the left

• A dependency usually corresponds to mapper B's
table having a foreign key to that of mapper A

• These pairs of Mapper objects form the "partial
ordering" passed to the topological sort

Unit of work
sorting per-

mapper

(,)User Address

Partial Ordering

User.addresses

Unit of work
sorting per-

mapper

SaveUpdateAll
(User)

ProcessAll
(User->Address)

SaveUpdateAll
(Address)

INSERT INTO user

INSERT INTO user

INSERT INTO address

INSERT INTO address

copy user.id to
address.user_id

copy user.id to
address.user_id

Dependency:
(user, address)

Topological Sort

DONE

(,)User Address

Partial Ordering

User.addresses

UOW - Cycle Resolution

• A cycle forms when a mapper is dependent on itself,
or on another mapper that's ultimately dependent
on it.

• Those portions of the dependency graph with cycles
are broken into inter-object sorts.

• I used a function on Guido's blog to detect the
cycles.

• Rationale - don't waste time sorting individual items
if we don't need it !

Unit of work
sorting per-row

(,)User Address

Partial Ordering

(,)User User Cycle

User.addresses

User.contact

Unit of work
sorting per-row

(,)
(,)Address

(mapper)

User 2
(obj)

Address
(mapper)

User 2
(obj)

User 1
(obj)

User 1
(obj)

(,)
Partial Ordering

(,)User Address

Partial Ordering

(,)User User

User.addresses

User.contact

Unit of work
sorting per-row

(,)
(,)Address

(mapper)

User 2
(obj)

Address
(mapper)

User 2
(obj)

User 1
(obj)

User 1
(obj)

(,)
Partial Ordering

Unit of work
sorting per-row

Dependency:
(user, address)

Topological Sort

Dependency:
(user, user)

DONE

SaveUpdateState

INSERT INTO user

SaveUpdateState

INSERT INTO user

ProcessState
(User->User)

copy user.id to
user.contact_id

ProcessAll
(User->Address)

copy user.id to
address.user_id

copy user.id to
address.user_id

SaveUpdateAll
(Address)

INSERT INTO address

INSERT INTO address

(,)
(,)Address

(mapper)

User 2
(obj)

Address
(mapper)

User 2
(obj)

User 1
(obj)

User 1
(obj)

(,)
Partial Ordering

We're done !
Hope this was
enlightening.

http://www.sqlalchemy.org

