SQLAlchemy

Hand Coded
Applications with
SQLAlIchemy

What's a Database?

e We can put data in, get it back out.

e Data is stored as records/rows/documents/
etc.

e Records/rows are composed of sets of
attributes.

e Queries allow us to find records that have
specific attributes.

What's a Relational Database?

e Fundamental storage unit is the column,
composed into rows, composed into tables.

e Rows across multiple tables can be transformed
Into new rows at query time using joins.

e Rows can be formed into "derived tables" using
subqueries.

e Set operations, aggregates, grouping, recursive
queries, window functions, triggers, functions/
SPs, etc.

e Transactional guarantees (i.e. the ACID model)

How do we talk to relational
databases?

e Database APIs, i.e. DBAPI in Python
e Abstraction layers

e Object relational mappers

How do we talk to databases?

Low Level APls,

DBAPI, etc.

— ‘

Less Abstraction More Abstraction

What's an ORM?

Automates persistence of domain models
into relational schemas

Provide querying and SQL generation in
terms of a domain model

Translates relational result sets back into
domain model state

Mediates between object-oriented and
relational geometries (relationships,
inheritance)

How much "abstraction” should an ORM
provide?

e Conceal details of how data is stored and
queried?

e Conceal that the database itself is relational?

e Should it talk to nonrelational sources
(MongoDB, DBM) just like a SQL database?

e These questions ask to what degree we
should be "hiding” things.

Problems with ORM Abstraction Considered as

"Hiding"

e SQL language is relational - joins, set
operations, derived tables, aggregates,
grouping, etc.

e Ability to organize and query for data in a
relational way is the primary feature of
relational databases.

e Hiding it means you no longer have first-
class access to those features.

e Re

o O

ational database is under-used, mis-used

nject Relational Impedance Mismatch”

We don't want "hiding”. We
want 'automation’.

e We are best off when we design and control
the schema/query side as well as how our
object model interacts with it.

e We still need tools to automate this process.

e Explicit decisions + automation via tools =
"Hand Coded".

SQLAIchemy and the
Hand Coded Approach

Hand Coded ?

~ mike bayer zzzeek 7 Oct
possible pycon talk: "Hand-coded applications with SQLAIchemy". Or

"hand-crafted” ? | feel like "handcrafted" is hackneyed these days
<+ Reply

Doug Hellmann L~

doughellmann

zzzeek How would they be made other than by
hand?

5:25 PM - 7 Oct 11 via Twitter for Mac - Embed this Tweet

4 Reply 13 Retweet W Favorite

Not All Apps are Hand Coded!

Call the Wizard...

Cut and Paste your data...

3 Create Page <Previous
: v :
Define Application: 2476 - PROJECT_TASKS :

Select a page type:
() Blank Page (O Multiple Blank Pages () Report

L

O Form

(O Calendar O Tree

E21 =] =

Microsoft Excel - fakespreadsheet.xls

: @Eile Edit View Insert Format Tools Data FlashPaper Window Help Adobe PDF

A

B

D E

Project
Maintain Support Systems
Maintain Support Systems

Task Name
HR software needs upgrade
Apply Billing system updates

Maintain Support Sy
Maintain Support Systems
Email Integration
Email Integration
Email Integration
Email Integration
Employee Satisfaction Survey
Employee Satisfaction Survey

gate new Viurs P
Apply Billing system updates
Complete plan
Check software licenses

| gate new Viurs P
Apply Billing system updates
Review with legal

Apply Billing system updates

Employ faction Survey
Employee Satisfaction Survey
Public Website
Public Website
Public Website

gate new Viurs P
Apply Billing system updates
HR software needs upgrade
Apply Billing system updates

new Viurs P
ly Billing systerm updates

i
Start Date End Date Status

1-Dec-07
5-Dec-07
2-Dec-07
2-Nov-07
1-Dec-07
5-Dec-07
2-Dec07
2-Nov-07
1-Dec-07
5-Dec-07
2-Dec-07
2-Nov-07
1-Dec-07
5-Dec-07
2-Dec-07
2:Nov-07

14-Jan-08 open
20-Dec-07 open
5-Jan-08 open
2-Dec-07 Closed
14-Jan-08 open
20-Dec-07 open
5-Jan-08 open
2-Dec-07 Closed
14-Jan-08 open
20-Dec-07 open
5-Jan-08 open
2-Dec-07 Closed
14-Jan-08 open
20-Dec-07 open
5-Jan-08 open
2-Dec-07 Closed

| Cancel ! Delete ,] Apply Changes |

Project Name| Email Integration v

Task Name|Purchase backup server
Rur S

Status| Open ‘7\
Assigned To Al Bines

Cost[3200 |

Budget/3000 |

It's Web Scale!

FAST

SCALABLE

SECURE

Includes built-in access management and data protection

But Zeek, those are corporate
GUI wizards, that's not what we
do in Python'!

e But, when we use tools that:
e Make schema design decisions for us
e Conceal the database, relational geometry
e Give us a "pass” on having to obey ACID

e It's a step in that direction; we give up
control of architecture to a third party.

Hand Coded Means:

e We make decisions.

e We implement and automate those decisions
with tools.

e We retain control over the architecture.

Hand Coded is the Opposite
of:

e Apps written by "wizards" - Obvious

e Apps that rely very heavily on "plugins”, third
party apps - Less Obvious

e Using APIs that make implementation
decisions - Subtle

Hand Coded does not
mean:

e We don't use any libraries.
e Definitely use these as much as possible!
e We don't use frameworks.

e Frameworks are great if they don't make
things harder!

e We don't use defaults.

e We make our own "defaults” using self-
established conventions.

What are some examples
of "Implementation
decisions” and "hiding"?

e Example 1: the "polymorphic association”
pattern

e Example 2: querying approaches that
oversimplify relational geometry

Example 1 - Polymorphic Association

Define a simple model representing accounts,
assets.

class BankAccount (BaseEntity):
owner = String
identifier = String

class PortfolioAsset(BaseEntity):
owner = String
symbol = String

Example 1 - Polymorphic Association

Table definitions for these are:

portfolio_ass bank_accou

id INTEGER (PK) | id INTEGER (PK)
owner VARCHAR owner VARCHAR
symbol VARCHAR identifier VARCHAR

Example 1 - Polymorphic Association

Now add a collection of "financial transactions”
to each:

from magic_library import GenericReference

class FinancialTransaction(BaseEntity):
amount = Numeric
timestamp = DateTime

class BankAccount (BaseEntity):
owner = String
identifier = String
transactions = GenericReference(FinancialTransaction)

class PortfolioAsset(BaseEntity):
owner = String
symbol = String
transactions = GenericReference(FinancialTransaction)

Example 1 - Polymorphic Association

Usage might look like:

some bank account.transactions = [
FinancialTransaction(100, datetime(2011, 10, 15, 12, 57, 7)),

FinancialTransaction(-50, datetime(2011, 11, 2, 8, 0, 0))
]

some portfolio asset.transactions = |
FinancialTransaction(525, datetime(2011, 9, 18, 17, 52 5)),

FinancialTransaction(54.12, datetime(2011, 9, 29, 15, 8, 7)),
FinancialTransaction(-10.04, datetime(2011, 10, 2, 5, 30, 17))

Example 1 - Polymorphic Association

What did GenericReference just build for us?

magic_content_ty

id INTEGER (PK)

financial_transaction

module_name VARCHAR id INTEGER (PK)
class_name VARCHAR amount NUMERIC
| foreign key timestamp DATETIME
L—< content_type_id INTEGER (FK)
m e e - - +< object_id INTEGER ("FK")

"foreigln key"

portfolio_ass
'H— id INTEGER (PK)
owner VARCHAR

symbol VARCHAR

' bank_accou
‘H— id INTEGER (PK)
owner VARCHAR

identifier VARCHAR

Example 1 - Polymorphic Association

What did GenericReference just build for us?

INSERT INTO magic_content type (id, module name, class name) VALUES (
(1, "someapp.account", "BankAccount"),
(2, "someapp.asset", "PortfolioAsset'"),

)

INSERT INTO financial transaction (id, amount, timestamp, object id,
content type id) VALUES (
(1, 100, '2011-10-15 12:57:07', 1, 1),
(2, -50, '2011-11-02 08:00:00', 1, 1),
(3, 525, '2011-09-18 17:52:05', 2, 2),
(4, 54.12, '2011-09-29 15:08:07', 2, 2),
(5, -10.04, '2011-10-02 05:30:17', 2, 2)

Implicit Design Decisions

e Added "magic_" tables to our schema.

e Python source code (module and class
names) stored as data, hardwired to app
structure.

e Storage of transaction records are in one
monolithic table, as opposed to table-per-
class, other schemes.

e Schema design is not constrainable. The
application layer, not the database, is
responsible for maintaining consistency.

Polymorphic Association -
SQLAlchemy's Approach

e SQLAlIchemy's approach encourages us to
specify how tables are designed and mapped
to classes explicitly.

e We use regular Python programming
techniques to establish composable patterns.

e This approach expresses our exact design
fully and eliminates boilerplate at the same
time.

Composable Patterns

Start with a typical SQLAlIchemy model:

from sqglalchemy.ext.declarative import declarative base
Base = declarative base()

class BankAccount (Base):
__tablename = 'bank account'

id = Column(Integer, primary key=True)
identifier = Column(String(38), nullable=False, unique=True)
owner = Column(String(30), nullable=False)

class PortfolioAsset(Base):
__tablename = 'portfolio asset'

id = Column(Integer, primary key=True)
symbol = Column(String(30), nullable=False, unique=True)
owner = Column(String(30), nullable=False)

Composable Patterns

Use Base classes to establish conventions
common to all/most mapped classes.

import re
from sqlalchemy.ext.declarative import declared attr

class Base(object):

@declared attr

def tablename (cls):
convert from CamelCase to words with underscores
name = cls. name

return (
name[0].lower() +
re.sub(r' ([A-Z2]) ',
lambda m:" " + m.group(0).lower(), name[l:])

)

provide an "id" column to all tables
id = Column(Integer, primary key=True)

Base = declarative base(cls=Base)

Composable Patterns

Use mixins and functions to define common
patterns

class HasOwner(object):
owner = Column(String(30), nullable=False)

def unique id(length):
return Column(String(length), nullable=False,
unique=True)

Composable Patterns

Now the same model becomes succinct

class BankAccount (HasOwner, Base):
identifier = unique id(38)

class PortfolioAsset(HasOwner, Base):
symbol = unique 1id(30)

HasTransactions Convention

Define a convention for the polymorphic
association, using table-per-class.

class TransactionBase(object):
amount = Column(Numeric(9, 2))
timestamp = Column(DateTime)

def init (self, amount, timestamp):
self.amount = amount
self.timestamp = timestamp

HasTransactions Convention

Define a convention for the polymorphic
association, using table-per-class.

class HasTransactions(object):

@declared_attr
def transactions(cls):
cls.Transaction = type(
create a new class, i.e. BankAccountTransaction
Transaction" % cls. name ,
(TransactionBase, Base,),
dict(
table name: "bank account transaction'
__tablename = '3%s transaction' %
cls. tablename ,

"bank account id REFERENCES (bank account.id)”

parent id = Column('%s id' % cls. tablename |,
ForeignKey("%s.id" % cls. tablename),
nullable=False)

)
)

relate HasTransactions -> Transaction
return relationship(cls.Transaction)

HasTransactions Convention

Apply HasTransactions to the Model

class BankAccount (HasTransactions, HasOwner, Base):
identifier = unique id(38)

class PortfolioAsset(HasTransactions, HasOwner, Base):
symbol = unique 1id(30)

HasTransactions Convention

Rudimental usage is similar.

some bank account = BankAccount(identifier="1234", owner="zzzeek")

some bank account.transactions = [
BankAccount.Transaction(100, datetime(2011, 10, 15, 12, 57, 7)),
BankAccount.Transaction(-50, datetime(2011, 11, 2, 8, 0, 0))

]

some portfolio asset = PortfolioAsset(
identifier="AAPL", owner="zzzeek'")

some portfolio asset.transactions = |
PortfolioAsset.Transaction(525, datetime(2011, 9, 18, 17, 52 5)),
PortfolioAsset.Transaction(54.12, datetime(2011, 9, 29, 15, 8, 7)),
PortfolioAsset.Transaction(-10.04, datetime(2011, 10, 2, 5, 30, 17))

HasTransactions Convention

What's the schema?

bank_account_transac

bank_accou id INTEGER (PK)
id INTEGER (PK) amount NUMERIC
owner VARCHAR

timestamp DATETIME

VARCHAR |+ < bank_account id INTEGER (FK)

identifier

portfolio_asset_transac

id INTEGER (PK) d INTEGER (PK)

amount NUMERIC
owner VARCHAR timestam DATETIME
symbol VARCHAR D

——< portfolio_asset_id INTEGER (FK)

Polymorphic Association - Summary

e Composed HasTransactions using a well-
understood recipe.

e Used our preferred naming/structural
conventions.

e Uses constraints and traditional normalized
design properly.

e Data in separate tables-per-parent (other
schemes possible too).

e Data not hardcoded to application structure
or source code

Why not improve
GenericReference 10O
support these practices?

e GenericReference would need to present
various modes of behavior in the form of more
options and flags, leading to a complex
configuration story.

e Once we know the polymorphic association
recipe, it becomes trivial and self documenting.
It's too simple to warrant introducing
configurational complexity from outside.

Example 2 - Exposing Relational Geometry

Query for the balance of an account, as of a
certain date.

A "hide the SQL" system might query like this:

some bank account.transactions.sum("amount").
filter(lessthan("timestamp", somedate))

Obvious SOL:

SELECT SUM(amount) FROM bank account transactions
WHERE

bank account id=2 AND

timestamp <= '2010-09-26 12:00:00'

Example 2 - Exposing Relational Geometry

e The "hide the SQL" system easily applied an

aggregate to a single field on a related
collection with a simple filter.

e But now | want:

e A report of average balance per month
across all accounts.

Example 2 - Exposing Relational Geometry

e Because our model stores data as individual
transaction amounts, we need to use
subqueries and/or window functions to
produce balances as a sum of amounts.

e In SQL, we build queries like these
incrementally, referencing relational structures
explicitly and building from the inside out.

e If our tools prevent us from doing this, we
either need to bypass them, or load the rows
into memory (which doesn't scale).

Example 2 - Exposing Relational Geometry

e SQLAlIchemy's query model explicitly exposes
the geometry of the underlying relational
structures.

o Like "power steering” for SQL. Doesn't teach
you how to drive!

e Developer should be aware of the SQL being
emitted. SQLAlchemy makes this easy via
logging or "echo” flag.

e Just like your car has windows to see where
you're going!

Build a Query from the Inside Out

Start with a query that extracts all the start/end
dates of each month in the
bank account transaction table:

SELECT MIN(timestamp) AS min,
MAX (timestamp) AS max,
EXTRACT (year FROM timestamp) AS year,
EXTRACT (month FROM timestamp) AS month
FROM bank account transaction
GROUP BY year, month
ORDER BY year, month

Build a Query from the Inside Out

2009-03-08
2009-04-05
2009-05-02
2009-06-08
2009-07-04
2009-08-04
2009-09-01
2009-10-01
2009-11-02
2009-12-01
2010-01-01
2010-02-01

Sample month ranges:

:31:16 2009-03-28 11:03:46
:02:30 2009-04-30 01:06:23
:38:42 2009-05-31 16:03:38
217:23 2009-06-30 03:24:03
:47:18 2009-07-31 21:20:08
:07:11 2009-08-30 12:20:17
:44:06 2009-09-30 05:18:24
:30:27 2009-10-29 12:47:23
:30:03 2009-11-29 13:54:39
:25:58 2009-12-28 20:01:35
:55:21 2010-01-30 19:49:28
:25:38 2010-02-26 14:18:07

Build a Query from the Inside Out

The other half of the query will use a "window"
function - evaluates an aggregate function as
rows are processed.

SELECT

bank account id,

timestamp,

amount,

SUM(amount) OVER (
PARTITION BY bank account id
ORDER BY timestamp

)

FROM bank account transaction

Build a Query from the Inside Out

Sample data from the "window":

bank account id timestamp amount sum

----------------- e
1 2009-05-19 23:28:22 7925.00 7925.00
1 2009-06-17 13:24:52 146.00 8071.00
1 2009-06-18 11:49:32 2644.00 10715.00

2 | 2009-04-09 14:36:48 | 5894.00 | 5894.00
2 | 2009-04-10 13:20:50 | 1196.00 | 7090.00

2 | 2009-05-06 21:07:26 | -3485.00 | 3605.00
3 | 2009-03-18 21:21:11 | 6648.00 | 6648.00
3 | 2009-04-17 15:43:31 | 711.00 | 7359.00

3 | 2009-04-23 06:41:20 | -1775.00 | 5584.00

Build a Query from the Inside Out

Join these two queries together:

SELECT . , avg(balances.balance) FROM
(SELECT MIN(timestamp) AS =
MAX (timestamp) AS ,
EXTRACT (year FROM timestamp) AS -

EXTRACT (month FROM timestamp) AS
FROM bank account_ transaction
GROUP BY y) AS month_ ranges
JOIN (SELECT timestamp,
SUM (amount) OVER (
PARTITION BY bank account_ id
ORDER BY timestamp
) AS balance
FROM bank_account_transaction
) AS balances
ON balances.timestamp
BETWEEN month_ ranges. AND month_ ranges
GROUP BY ORDER BY

Build a Query from the Inside Out

Final Result
year month avg
______ S
2009 3 5180.75
2009 4 5567.30
2009 5 9138.33
2009 6 8216.22
2009 7 9889.50
2009 8 10060.92
2009 9 10139.81
2009 10 15868.20
2009 11 16562.52
2009 12 17302.37

Build a Query from the Inside Out

e Now we'll build this in SQLAlchemy.

e SQLAIchemy provides the same "inside out”
paradigm as SQL itself.

e You think in terms of SQL relations and joins
in the same way as when constructing plain
SQL.

e SQLAIchemy can then apply automated
enhancements such as eager loading, row
limiting, further relational transformations.

Build a Query () from the Inside Out

All the start/end dates of each month in the
bank account transaction table:

from sqlalchemy import func, extract
Transaction = BankAccount.Transaction

month ranges = session.query(

func.min(Transaction.timestamp).label("min"),
func.max(Transaction.timestamp) .label("max"),
extract("year", Transaction.timestamp).label("year"),
extract("month", Transaction.timestamp).label("month")

) .group_by (

"year", "month"
) . subquery ()

Build a Query () from the Inside Out

All balances on all days via window function:

all balances and timestamps = session.query
Transaction.timestamp,
func.sum(Transaction.amount) .over (
partition by=Transaction.parent id,
order by=Transaction.timestamp
) .label("balance")
) .subquery ()

Build a Query () from the Inside Out

Join the two together:

avg balance per month = \
session.query (
month ranges.c.year,
month ranges.c.month,
func.avg(all balances and timestamps.c.balance)).\
select from(month ranges).\
join(all balances and timestamps,
all balances and timestamps.c.timestamp.between (
month ranges.c.min, month ranges.c.max)
) .group_by (
"year", "month"
) .order by (
"year", "month"

)

Build a Query () from the Inside Out
The Result

for year, month, avg in avg balance per month:
print year, month, round(avg, 2)

2009 3 5180.75
2009 4 5567.3

2009 5 9138.33
2009 6 8216.22
2009 7 9889.5

2009 8 10060.93
2009 9 10139.82
2009 10 15868.2
2009 11 16562.53

2009 12 17302.38

Build a Query () from the Inside Out
The SQL

SELECT
AS .
AS 0
avg(anon_2.balance) AS avg 1 FROM (
SELECT
min (bank_account_transaction.timestamp) AS v
max (bank_account_transaction.timestamp) AS ;
EXTRACT (year FROM bank_account_transaction.timestamp:: timestamp) AS ’

EXTRACT (month FROM bank_account_ transaction.timestamp::timestamp) AS
FROM bank_account_transaction

GROUP BY .
) AS anon_1 JOIN (
SELECT

bank_ account_transaction.bank_account_id AS bank_account_id,
bank account_transaction.timestamp AS timestamp,
sum(bank_account_transaction.amount) OVER (
PARTITION BY bank account_transaction.bank account_id
ORDER BY bank_account_ transaction.timestamp
) AS balance
FROM bank_account_transaction
) AS anon_2 ON anon_2.timestamp BETWEEN anon_1l. AND anon_1l.
GROUP BY , ORDER BY ,

Hand Coded - Summary

The developer retains control over the
relational form of the target data.

Schema design decisions are all made by the
developer. Tools shouldn't make decisions.

SQLA provides a rich, detailed vocabulary to
express and automate these decisions.

Developer creates patterns and conventions
nased on this vocabulary.

Relational geometry remains an explicit
concept complementing the object model.

"Leaky Abstraction”

e This term refers to when an abstraction layer
exposes some detail about what's
underneath.

e Does SQLAlIchemy's schema design paradigm
and Query () object exhibit this behavior?

e You bet!

e All non-trivial abstractions, to some degree,
are leaky. - Joel On Software

e SQLAlIchemy accepts this reality up front to
create the best balance possible.

@ My account Visit our Mobile Site!
~ My shopping cart Join our email list

Welcome! Ask Anna! My shopping list Informacion en espariol

All New Offers! Living room Bedroom Kitchen & Appliances

Home / Living room / Bookcases / BILLY system Frames

BILLY

Bookcase, birch veneer

The price reflects selected op

s selected tions
Article Number: 900.857.02

Narrow shelves help you use small wall
spaces effectively by accommodating .
small items in @ minimum of space.

Read more
Color
[birch veneer a

|1 Buy online Save to list

Complementary Products

=N
=

o | =W

View all complementary products

Assembly instructions
BILLY Bookcase (PDF)

Hand Coded... ...vs. Design by 3rd Party

Hand Coded produces accurately targeted,
long lasting designs that resist technical debt

SQLAlchemy

We're done |
Hope this was
enlightening.

http://www.sqglalchemy.org

