
Hand Coded
Applications with
SQLAlchemy

What's a Database?

• We can put data in, get it back out.

• Data is stored as records/rows/documents/
etc.

• Records/rows are composed of sets of
attributes.

• Queries allow us to find records that have
specific attributes.

What's a Relational Database?
• Fundamental storage unit is the column,
composed into rows, composed into tables.

• Rows across multiple tables can be transformed
into new rows at query time using joins.

• Rows can be formed into "derived tables" using
subqueries.

• Set operations, aggregates, grouping, recursive
queries, window functions, triggers, functions/
SPs, etc.

• Transactional guarantees (i.e. the ACID model)

How do we talk to relational
databases?

• Database APIs, i.e. DBAPI in Python

• Abstraction layers

• Object relational mappers

How do we talk to databases?

Abstraction LayersLow Level APIs,
DBAPI, etc.

Object Relational
Mappers

Less Abstraction More Abstraction

What's an ORM?
• Automates persistence of domain models
into relational schemas

• Provide querying and SQL generation in
terms of a domain model

• Translates relational result sets back into
domain model state

• Mediates between object-oriented and
relational geometries (relationships,
inheritance)

How much "abstraction" should an ORM
provide?

• Conceal details of how data is stored and
queried?

• Conceal that the database itself is relational?
• Should it talk to nonrelational sources
(MongoDB, DBM) just like a SQL database?

• These questions ask to what degree we
should be "hiding" things.

Problems with ORM Abstraction Considered as
"Hiding"

• SQL language is relational - joins, set
operations, derived tables, aggregates,
grouping, etc.

• Ability to organize and query for data in a
relational way is the primary feature of
relational databases.

• Hiding it means you no longer have first-
class access to those features.

• Relational database is under-used, mis-used
• "Object Relational Impedance Mismatch"

We don't want "hiding". We
want "automation".

• We are best off when we design and control
the schema/query side as well as how our
object model interacts with it.

• We still need tools to automate this process.

• Explicit decisions + automation via tools =
"Hand Coded".

SQLAlchemy and the
Hand Coded Approach

Hand Coded ?

Not All Apps are Hand Coded!
Call the Wizard... Cut and Paste your data...

Formus Creare! It's Web Scale!

But Zeek, those are corporate
GUI wizards, that's not what we

do in Python !

• But, when we use tools that:

• Make schema design decisions for us

• Conceal the database, relational geometry
• Give us a "pass" on having to obey ACID

• It's a step in that direction; we give up
control of architecture to a third party.

Hand Coded Means:

• We make decisions.
• We implement and automate those decisions
with tools.

• We retain control over the architecture.

Hand Coded is the Opposite
of:

• Apps written by "wizards" - Obvious

• Apps that rely very heavily on "plugins", third
party apps - Less Obvious

• Using APIs that make implementation
decisions - Subtle

Hand Coded does not
mean:

• We don't use any libraries.
• Definitely use these as much as possible!

• We don't use frameworks.
• Frameworks are great if they don't make
things harder!

• We don't use defaults.
• We make our own "defaults" using self-
established conventions.

What are some examples
of "implementation

decisions" and "hiding"?

• Example 1: the "polymorphic association"
pattern

• Example 2: querying approaches that
oversimplify relational geometry

Define a simple model representing accounts,
assets.

Example 1 - Polymorphic Association

class BankAccount(BaseEntity):
 owner = String
 identifier = String

class PortfolioAsset(BaseEntity):
 owner = String
 symbol = String

Table definitions for these are:

Example 1 - Polymorphic Association

VARCHARidentifier
VARCHARowner
INTEGER (PK)id

bank_account

VARCHARsymbol
VARCHARowner
INTEGER (PK)id

portfolio_asset

Now add a collection of "financial transactions"
to each:

Example 1 - Polymorphic Association

from magic_library import GenericReference

class FinancialTransaction(BaseEntity):
 amount = Numeric
 timestamp = DateTime

class BankAccount(BaseEntity):
 owner = String
 identifier = String
 transactions = GenericReference(FinancialTransaction)

class PortfolioAsset(BaseEntity):
 owner = String
 symbol = String
 transactions = GenericReference(FinancialTransaction)

Usage might look like:

Example 1 - Polymorphic Association

some_bank_account.transactions = [
 FinancialTransaction(100, datetime(2011, 10, 15, 12, 57, 7)),
 FinancialTransaction(-50, datetime(2011, 11, 2, 8, 0, 0))
]

some_portfolio_asset.transactions = [
 FinancialTransaction(525, datetime(2011, 9, 18, 17, 52 5)),
 FinancialTransaction(54.12, datetime(2011, 9, 29, 15, 8, 7)),
 FinancialTransaction(-10.04, datetime(2011, 10, 2, 5, 30, 17))
]

What did GenericReference just build for us?

Example 1 - Polymorphic Association

VARCHARidentifier
VARCHARowner
INTEGER (PK)id

bank_account

INTEGER ("FK")object_id
INTEGER (FK)content_type_id
DATETIMEtimestamp
NUMERICamount
INTEGER (PK)id

financial_transaction

VARCHARclass_name
VARCHARmodule_name
INTEGER (PK)id

magic_content_type

VARCHARsymbol
VARCHARowner
INTEGER (PK)id

portfolio_asset

foreign key

"foreign key"
"foreign key"

What did GenericReference just build for us?

Example 1 - Polymorphic Association

INSERT INTO magic_content_type (id, module_name, class_name) VALUES (
 (1, "someapp.account", "BankAccount"),
 (2, "someapp.asset", "PortfolioAsset"),
)

INSERT INTO financial_transaction (id, amount, timestamp, object_id,
content_type_id) VALUES (
 (1, 100, '2011-10-15 12:57:07', 1, 1),
 (2, -50, '2011-11-02 08:00:00', 1, 1),
 (3, 525, '2011-09-18 17:52:05', 2, 2),
 (4, 54.12, '2011-09-29 15:08:07', 2, 2),
 (5, -10.04, '2011-10-02 05:30:17', 2, 2)
)

Implicit Design Decisions
• Added "magic_" tables to our schema.

• Python source code (module and class
names) stored as data, hardwired to app
structure.

• Storage of transaction records are in one
monolithic table, as opposed to table-per-
class, other schemes.

• Schema design is not constrainable. The
application layer, not the database, is
responsible for maintaining consistency.

Polymorphic Association -
SQLAlchemy's Approach

• SQLAlchemy's approach encourages us to
specify how tables are designed and mapped
to classes explicitly.

• We use regular Python programming
techniques to establish composable patterns.

• This approach expresses our exact design
fully and eliminates boilerplate at the same
time.

Start with a typical SQLAlchemy model:

Composable Patterns

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class BankAccount(Base):
 __tablename__ = 'bank_account'

 id = Column(Integer, primary_key=True)
 identifier = Column(String(38), nullable=False, unique=True)
 owner = Column(String(30), nullable=False)

class PortfolioAsset(Base):
 __tablename__ = 'portfolio_asset'

 id = Column(Integer, primary_key=True)
 symbol = Column(String(30), nullable=False, unique=True)
 owner = Column(String(30), nullable=False)

Use Base classes to establish conventions
common to all/most mapped classes.

Composable Patterns

import re
from sqlalchemy.ext.declarative import declared_attr

class Base(object):

 @declared_attr
 def __tablename__(cls):
 # convert from CamelCase to words_with_underscores
 name = cls.__name__
 return (
 name[0].lower() +
 re.sub(r'([A-Z])',
 lambda m:"_" + m.group(0).lower(), name[1:])
)

 # provide an "id" column to all tables
 id = Column(Integer, primary_key=True)

Base = declarative_base(cls=Base)

Use mixins and functions to define common
patterns

Composable Patterns

class HasOwner(object):
 owner = Column(String(30), nullable=False)

def unique_id(length):
 return Column(String(length), nullable=False,
 unique=True)

Now the same model becomes succinct

Composable Patterns

class BankAccount(HasOwner, Base):
 identifier = unique_id(38)

class PortfolioAsset(HasOwner, Base):
 symbol = unique_id(30)

Define a convention for the polymorphic
association, using table-per-class.

HasTransactions Convention

class TransactionBase(object):
 amount = Column(Numeric(9, 2))
 timestamp = Column(DateTime)

 def __init__(self, amount, timestamp):
 self.amount = amount
 self.timestamp = timestamp

Define a convention for the polymorphic
association, using table-per-class.

HasTransactions Convention

class HasTransactions(object):

 @declared_attr
 def transactions(cls):
 cls.Transaction = type(
 # create a new class, i.e. BankAccountTransaction
 "%sTransaction" % cls.__name__,
 (TransactionBase, Base,),
 dict(
 # table name: "bank_account_transaction"
 __tablename__ = '%s_transaction' %
 cls.__tablename__,

 # "bank_account_id REFERENCES (bank_account.id)"
 parent_id = Column('%s_id' % cls.__tablename__,
 ForeignKey("%s.id" % cls.__tablename__),
 nullable=False)
)
)
 # relate HasTransactions -> Transaction
 return relationship(cls.Transaction)

Apply HasTransactions to the Model

HasTransactions Convention

class BankAccount(HasTransactions, HasOwner, Base):
 identifier = unique_id(38)

class PortfolioAsset(HasTransactions, HasOwner, Base):
 symbol = unique_id(30)

Rudimental usage is similar.

HasTransactions Convention

some_bank_account = BankAccount(identifier="1234", owner="zzzeek")

some_bank_account.transactions = [
 BankAccount.Transaction(100, datetime(2011, 10, 15, 12, 57, 7)),
 BankAccount.Transaction(-50, datetime(2011, 11, 2, 8, 0, 0))
]

some_portfolio_asset = PortfolioAsset(
 identifier="AAPL", owner="zzzeek")

some_portfolio_asset.transactions = [
 PortfolioAsset.Transaction(525, datetime(2011, 9, 18, 17, 52 5)),
 PortfolioAsset.Transaction(54.12, datetime(2011, 9, 29, 15, 8, 7)),
 PortfolioAsset.Transaction(-10.04, datetime(2011, 10, 2, 5, 30, 17))
]

What's the schema?

HasTransactions Convention

INTEGER (FK)bank_account_id
DATETIMEtimestamp
NUMERICamount
INTEGER (PK)id

bank_account_transaction

VARCHARidentifier
VARCHARowner
INTEGER (PK)id

bank_account

VARCHARsymbol
VARCHARowner
INTEGER (PK)id

portfolio_asset

INTEGER (FK)portfolio_asset_id
DATETIMEtimestamp
NUMERICamount
INTEGER (PK)id

portfolio_asset_transaction

Polymorphic Association - Summary

• Composed HasTransactions using a well-
understood recipe.

• Used our preferred naming/structural
conventions.

• Uses constraints and traditional normalized
design properly.

• Data in separate tables-per-parent (other
schemes possible too).

• Data not hardcoded to application structure
or source code

Why not improve
GenericReference to

support these practices?

• GenericReference would need to present
various modes of behavior in the form of more
options and flags, leading to a complex
configuration story.

• Once we know the polymorphic association
recipe, it becomes trivial and self documenting.
It's too simple to warrant introducing
configurational complexity from outside.

Query for the balance of an account, as of a
certain date.

Example 2 - Exposing Relational Geometry

A "hide the SQL" system might query like this:

some_bank_account.transactions.sum("amount").
 filter(lessthan("timestamp", somedate))

Obvious SQL:

SELECT SUM(amount) FROM bank_account_transactions
WHERE
 bank_account_id=2 AND
 timestamp <= '2010-09-26 12:00:00'

Example 2 - Exposing Relational Geometry

• The "hide the SQL" system easily applied an
aggregate to a single field on a related
collection with a simple filter.

• But now I want:

• A report of average balance per month
across all accounts.

Example 2 - Exposing Relational Geometry

• Because our model stores data as individual
transaction amounts, we need to use
subqueries and/or window functions to
produce balances as a sum of amounts.

• In SQL, we build queries like these
incrementally, referencing relational structures
explicitly and building from the inside out.

• If our tools prevent us from doing this, we
either need to bypass them, or load the rows
into memory (which doesn't scale).

Example 2 - Exposing Relational Geometry

• SQLAlchemy's query model explicitly exposes
the geometry of the underlying relational
structures.

• Like "power steering" for SQL. Doesn't teach
you how to drive!

• Developer should be aware of the SQL being
emitted. SQLAlchemy makes this easy via
logging or "echo" flag.

• Just like your car has windows to see where
you're going!

Start with a query that extracts all the start/end
dates of each month in the

bank_account_transaction table:

Build a Query from the Inside Out

SELECT MIN(timestamp) AS min,
 MAX(timestamp) AS max,
 EXTRACT (year FROM timestamp) AS year,
 EXTRACT (month FROM timestamp) AS month
FROM bank_account_transaction
GROUP BY year, month
ORDER BY year, month

Sample month ranges:

Build a Query from the Inside Out

 min | max | year | month
---------------------+---------------------+------+-------
 2009-03-08 10:31:16 | 2009-03-28 11:03:46 | 2009 | 3
 2009-04-05 08:02:30 | 2009-04-30 01:06:23 | 2009 | 4
 2009-05-02 22:38:42 | 2009-05-31 16:03:38 | 2009 | 5
 2009-06-08 23:17:23 | 2009-06-30 03:24:03 | 2009 | 6
 2009-07-04 09:47:18 | 2009-07-31 21:20:08 | 2009 | 7
 2009-08-04 22:07:11 | 2009-08-30 12:20:17 | 2009 | 8
 2009-09-01 05:44:06 | 2009-09-30 05:18:24 | 2009 | 9
 2009-10-01 13:30:27 | 2009-10-29 12:47:23 | 2009 | 10
 2009-11-02 08:30:03 | 2009-11-29 13:54:39 | 2009 | 11
 2009-12-01 14:25:58 | 2009-12-28 20:01:35 | 2009 | 12
 2010-01-01 11:55:21 | 2010-01-30 19:49:28 | 2010 | 1
 2010-02-01 12:25:38 | 2010-02-26 14:18:07 | 2010 | 2
 ...

The other half of the query will use a "window"
function - evaluates an aggregate function as

rows are processed.

Build a Query from the Inside Out

SELECT
 bank_account_id,
 timestamp,
 amount,
 SUM(amount) OVER (
 PARTITION BY bank_account_id
 ORDER BY timestamp
)
FROM bank_account_transaction

Sample data from the "window":

Build a Query from the Inside Out

bank_account_id | timestamp | amount | sum
-----------------+---------------------+----------+----------
 1 | 2009-05-19 23:28:22 | 7925.00 | 7925.00
 1 | 2009-06-17 13:24:52 | 146.00 | 8071.00
 1 | 2009-06-18 11:49:32 | 2644.00 | 10715.00
 ...
 2 | 2009-04-09 14:36:48 | 5894.00 | 5894.00
 2 | 2009-04-10 13:20:50 | 1196.00 | 7090.00
 2 | 2009-05-06 21:07:26 | -3485.00 | 3605.00
 ...
 3 | 2009-03-18 21:21:11 | 6648.00 | 6648.00
 3 | 2009-04-17 15:43:31 | 711.00 | 7359.00
 3 | 2009-04-23 06:41:20 | -1775.00 | 5584.00
 ...

Join these two queries together:
Build a Query from the Inside Out

SELECT year, month, avg(balances.balance) FROM
 (SELECT MIN(timestamp) AS min,
 MAX(timestamp) AS max,
 EXTRACT (year FROM timestamp) AS year,
 EXTRACT (month FROM timestamp) AS month
 FROM bank_account_transaction
 GROUP BY year, month) AS month_ranges
JOIN (SELECT timestamp,
 SUM(amount) OVER (
 PARTITION BY bank_account_id
 ORDER BY timestamp
) AS balance
 FROM bank_account_transaction
) AS balances
ON balances.timestamp
 BETWEEN month_ranges.min AND month_ranges.max
GROUP BY year, month ORDER BY year, month

Final Result

Build a Query from the Inside Out

 year | month | avg
------+-------+---------
 2009 | 3 | 5180.75
 2009 | 4 | 5567.30
 2009 | 5 | 9138.33
 2009 | 6 | 8216.22
 2009 | 7 | 9889.50
 2009 | 8 | 10060.92
 2009 | 9 | 10139.81
 2009 | 10 | 15868.20
 2009 | 11 | 16562.52
 2009 | 12 | 17302.37
 ...

Build a Query from the Inside Out

• Now we'll build this in SQLAlchemy.

• SQLAlchemy provides the same "inside out"
paradigm as SQL itself.

• You think in terms of SQL relations and joins
in the same way as when constructing plain
SQL.

• SQLAlchemy can then apply automated
enhancements such as eager loading, row
limiting, further relational transformations.

All the start/end dates of each month in the
bank_account_transaction table:

Build a Query() from the Inside Out

from sqlalchemy import func, extract

Transaction = BankAccount.Transaction

month_ranges = session.query(
 func.min(Transaction.timestamp).label("min"),
 func.max(Transaction.timestamp).label("max"),
 extract("year", Transaction.timestamp).label("year"),
 extract("month", Transaction.timestamp).label("month")
).group_by(
 "year","month"
).subquery()

All balances on all days via window function:

Build a Query() from the Inside Out

all_balances_and_timestamps = session.query(
 Transaction.timestamp,
 func.sum(Transaction.amount).over(
 partition_by=Transaction.parent_id,
 order_by=Transaction.timestamp
).label("balance")
).subquery()

Join the two together:

Build a Query() from the Inside Out

avg_balance_per_month = \
 session.query(
 month_ranges.c.year,
 month_ranges.c.month,
 func.avg(all_balances_and_timestamps.c.balance)).\
 select_from(month_ranges).\
 join(all_balances_and_timestamps,
 all_balances_and_timestamps.c.timestamp.between(
 month_ranges.c.min, month_ranges.c.max)
).group_by(
 "year", "month"
).order_by(
 "year", "month"
)

The Result
Build a Query() from the Inside Out

for year, month, avg in avg_balance_per_month:
 print year, month, round(avg, 2)

2009! ! 3! ! 5180.75
2009! ! 4! ! 5567.3
2009! ! 5! ! 9138.33
2009! ! 6! ! 8216.22
2009! ! 7! ! 9889.5
2009! ! 8! ! 10060.93
2009! ! 9! ! 10139.82
2009! ! 10!! 15868.2
2009! ! 11!! 16562.53
2009! ! 12!! 17302.38
...

The SQL
Build a Query() from the Inside Out

SELECT
 anon_1.year AS anon_1_year,
 anon_1.month AS anon_1_month,
 avg(anon_2.balance) AS avg_1 FROM (
 SELECT
 min(bank_account_transaction.timestamp) AS min,
 max(bank_account_transaction.timestamp) AS max,
 EXTRACT(year FROM bank_account_transaction.timestamp:: timestamp) AS year,
 EXTRACT(month FROM bank_account_transaction.timestamp::timestamp) AS month
 FROM bank_account_transaction
 GROUP BY year, month
) AS anon_1 JOIN (
 SELECT
 bank_account_transaction.bank_account_id AS bank_account_id,
 bank_account_transaction.timestamp AS timestamp,
 sum(bank_account_transaction.amount) OVER (
 PARTITION BY bank_account_transaction.bank_account_id
 ORDER BY bank_account_transaction.timestamp
) AS balance
 FROM bank_account_transaction
) AS anon_2 ON anon_2.timestamp BETWEEN anon_1.min AND anon_1.max
GROUP BY year, month ORDER BY year, month

Hand Coded - Summary
• The developer retains control over the
relational form of the target data.

• Schema design decisions are all made by the
developer. Tools shouldn't make decisions.

• SQLA provides a rich, detailed vocabulary to
express and automate these decisions.

• Developer creates patterns and conventions
based on this vocabulary.

• Relational geometry remains an explicit
concept complementing the object model.

"Leaky Abstraction"
• This term refers to when an abstraction layer
exposes some detail about what's
underneath.

• Does SQLAlchemy's schema design paradigm
and Query() object exhibit this behavior?

• You bet!

• All non-trivial abstractions, to some degree,
are leaky. - Joel On Software

• SQLAlchemy accepts this reality up front to
create the best balance possible.

Hand Coded... ...vs. Design by 3rd Party

Hand Coded produces accurately targeted,
long lasting designs that resist technical debt

We're done !
Hope this was
enlightening.

http://www.sqlalchemy.org

